Millions of blood components including red blood cells, platelets, and granulocytes are transfused each year in the United States. The transfusion of these blood products may be associated with adverse clinical outcomes in some patients due to residual proteins and other contaminants that accumulate in blood units during processing and storage. Blood products are, therefore, often washed in normal saline or other media to remove the contaminants and improve the quality of blood cells before transfusion. While there are numerous methods for washing and volume reducing blood components, a vast majority utilize centrifugation-based processing, such as manual centrifugation, open and closed cell processing systems, and cell salvage/autotransfusion devices. Although these technologies are widely employed with a relatively low risk to the average patient, there is evidence that centrifugation-based processing may be inadequate when transfusing to immunocompromised patients, neonatal and infant patients, or patients susceptible to transfusion-related allergic reactions. Cell separation and volume reduction techniques that employ centrifugation have been shown to damage blood cells, contributing to these adverse outcomes. The limitations and disadvantages of centrifugation-based processing have spurred the development of novel centrifugation-free methods for washing and volume reducing blood components, thereby causing significantly less damage to the cells. Some of these emerging technologies are already transforming niche applications, poised to enter mainstream blood cell processing in the not too distant future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322496 | PMC |
http://dx.doi.org/10.2147/JBM.S166316 | DOI Listing |
Integr Environ Assess Manag
January 2025
Department of Environmental Engineering, Ondokuz Mayıs University, Samsun, Türkiye.
The consideration of scarcity and overexploitation of freshwater at the organizational level increased interest in the water footprint. The water footprint measures freshwater use for activities, taking into account water consumption and pollution contamination by classifying consumed water into groundwater and surface water (blue water), rainwater (green water), and polluted water (grey water). This study aims to identify a comprehensive water footprint inventory analysis for a denim washing organization and assess the grey water footprint (GWF) based on the effluent concentration of pollution indicators (chemical oxygen demand (COD), suspended solids (SS), ammonium nitrogen (NH4-N), and phenol) measured monthly in 2021.
View Article and Find Full Text PDFA method for analyzing tetrodotoxin (TTX) in miso soup samples was proposed. The samples were purified using strong cation exchange solid-phase extraction and analyzed by liquid chromatography-tandem mass spectrometry. The recovery of TTX was considerably influenced by the salt concentration in the loading solution during purification.
View Article and Find Full Text PDFNeurourol Urodyn
January 2025
Department of Surgery, Division of Urology, Virginia Commonwealth University Health System, Richmond, Virginia, USA.
Introduction And Objective: Observable autonomous rhythmic changes in intravesical pressure, termed bladder wall micromotion, is a phenomenon that has been linked to urinary urgency, the key symptom in overactive bladder (OAB). However, the mechanism through which micromotion drives urinary urgency is poorly understood. In addition, micromotion is inherently difficult to study in human urodynamics due to challenges distinguishing it from normal cyclic physiologic processes such as pulse rate, breathing, rectal contractions, and ureteral jetting.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
Biochars (BCs) derived from waste-branches of apple tree, grape tree, and oak were developed for direct solid-phase extraction (SPE) of five benzodiazepines (BZDs) in crude urine samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. Scanning electron microscopy, elemental analyzer, X-ray diffractometry, N adsorption/desorption experiments, and Fourier transform infrared spectrometry characterizations revealed the existence of their mesoporous structure and numerous oxygen-containing functional groups. The obtained BCs not only possessed high affinity towards BZDs via π-π and hydrogen bond interactions, but also afforded the great biocompatibility of excluding interfering components from undiluted urine samples when using SPE adsorbents.
View Article and Find Full Text PDFFood Res Int
January 2025
Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina. Electronic address:
Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!