Cells of all mammals recognize double-stranded RNA (dsRNA) as a foreign material. In response, they release interferons (IFNs) and activate a ubiquitously expressed pseudokinase/endoribonuclease RNase L. RNase L executes regulated RNA decay and halts global translation. Here, we developed a biosensor for 2',5'-oligoadenylate (2-5A), the natural activator of RNase L. Using this biosensor, we found that 2-5A was acutely synthesized by cells in response to dsRNA sensing, which immediately triggered cellular RNA cleavage by RNase L and arrested host protein synthesis. However, translation-arrested cells still transcribed IFN-stimulated genes and secreted IFNs of types I and III (IFN-β and IFN-λ). Our data suggest that IFNs escape from the action of RNase L on translation. We propose that the 2-5A/RNase L pathway serves to rapidly and accurately suppress basal protein synthesis, preserving privileged production of defense proteins of the innate immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369740PMC
http://dx.doi.org/10.1073/pnas.1818363116DOI Listing

Publication Analysis

Top Keywords

protein synthesis
8
rnase
6
real-time 2-5a
4
2-5a kinetics
4
kinetics interferons
4
interferons evade
4
evade global
4
global arrest
4
arrest translation
4
translation rnase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!