Calprotectin instability may lead to undertreatment in children with IBD.

Arch Dis Child

Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Published: October 2020

Background: Treatment decisions in children with inflammatory bowel disease (IBD) are increasingly based on longitudinal tracking of faecal calprotectin concentrations, but there is little known about the stability of this protein in stool.

Methods: We stored aliquots of homogenised stool at room temperature and at 4°C, and measured the calprotectin concentration for 6 consecutive days with three different assays. In addition, we assessed calprotectin stability in assay-specific extraction buffers kept at room temperature.

Results: After 6 days of storage at room temperature, mean percentage change from baseline calprotectin concentrations in stool and extraction buffer was 35% and 46%, respectively. The stability of calprotectin was significantly better preserved in samples stored at 4°C (p=0.0066 and 0.0011, respectively).

Conclusions: Calprotectin is not stable at room temperature. Children with IBD and their caretakers may be falsely reassured by low calprotectin values. The best advisable standard for preanalytical calprotectin handling is refrigeration of the stool sample until delivery at the hospital laboratory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513246PMC
http://dx.doi.org/10.1136/archdischild-2018-316584DOI Listing

Publication Analysis

Top Keywords

room temperature
12
calprotectin
9
children ibd
8
calprotectin concentrations
8
calprotectin instability
4
instability lead
4
lead undertreatment
4
undertreatment children
4
ibd background
4
background treatment
4

Similar Publications

Respiratory and Cardiovascular Medical Emergency Calls Related to Indoor Heat Exposure through a Case-Control Study in New York City.

J Urban Health

January 2025

Department of Geography, Florida State University, Bellamy Building, Room 323, 113 Collegiate Loop, PO Box 3062190, Tallahassee, FL, 32306-2190, USA.

Understanding when and where heat adversely influences health outcomes is critical for targeting interventions and adaptations. However, few studies have analyzed the role of indoor heat exposures on acute health outcomes. To address this research gap, the study partnered with the New York City Fire Department Emergency Medical Services.

View Article and Find Full Text PDF

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) with excellent ionic conductivity and a wide electrochemical stability window are critical for high-energy lithium metal batteries (LMBs). However, the widespread application of polymer electrolytes is severely limited by inadequate room-temperature ionic conductivity, sluggish interfacial charge transport, and uncontrolled reactions at the electrode/electrolyte interface. Herein, we present a uniform polymerized 1,3-dioxolane (PDOL) composite solid polymer electrolyte (PDOL-S/F-nano LiF CSE) that satisfies these requirements through the in situ catalytic polymerization effect of nano LiF on the polymerization of 1,3-dioxolane-based electrolytes.

View Article and Find Full Text PDF

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!