In nature, there are >200 species of fungi with hallucinogenic properties. These fungi are classified as Psilocybe, Gymnopilus, and Panaeolus which contain active principles with hallucinogenic properties such as ibotenic acid, psilocybin, psilocin, or baeocystin. In Chile, fungi seizures are mainly of mature specimens or spores. However, clandestine laboratories have been found that process fungus samples at the mycelium stage. In this transient stage of growth (mycelium), traditional taxonomic identification is not feasible, making it necessary to develop a new method of study. Currently, DNA analysis is the only reliable method that can be used as an identification tool for the purposes of supporting evidence, due to the high variability of DNA between species. One way to identify the species of a distinctive DNA fragment is to study PCR products analyzed by real time PCR and sequencing. One of the most popular sequencing methods of forensic interest at the generic and intra-generic levels in plants is internal transcribed spacer (ITS). With real time PCR it is possible to distinguish PCR products by differential analysis of their melting temperature (Tm) curves. This paper describes morphological, chemical, and genetic analysis of mycelia of psychedelic fungi collected from a clandestine laboratory. The fungus species were identified using scanning electron microscopy (SEM), mass spectrometry, HRM analysis, and ITS sequencing. The sporological studies showed a generally smooth surface and oval shape, with maximum length 10.1 μm and width 6.4 μm. The alkaloid Psilocyn was identified by mass spectrometry, while HRM analysis and ITS sequencing identified the species as Psilocybe cubensis. A genetic match was confirmed between the HRM curves obtained from the mycelia (evidence) and biological tissue extracted from the fruiting bodies. Mycelia recovered from the evidence and fruiting bodies (control) were genetically indistinguishable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scijus.2018.08.005DOI Listing

Publication Analysis

Top Keywords

hallucinogenic properties
8
pcr products
8
real time
8
time pcr
8
mass spectrometry
8
spectrometry hrm
8
hrm analysis
8
analysis sequencing
8
fruiting bodies
8
analysis
6

Similar Publications

Comprehensive evaluation of the toxicological effects of commonly encountered synthetic cathinones using in silico methods.

Toxicol Res (Camb)

February 2025

Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Synthetic cathinones (SCs), a group of new psychoactive substances (NPS), are designer molecules with hallucinogenic and psychostimulatory effects. Although the structural similarities of SCs to amphetamines suggest that they may have similar toxicity profiles to those of amphetamine congeners, little is known about SCs from a toxicological point of view. In the present study, the toxicity profiles of commonly encountered SCs ( = 65), listed in the 2020 Report of the United Nations Office on Drugs and Crime (UNODC), were evaluated using in silico methods.

View Article and Find Full Text PDF

Nutmeg and mace are commonly known for their medicinal and culinary properties. The chemical compounds found in nutmeg and mace, notably myristicin, elemicin, and safrole, have been implicated in the psychoactive and anticholinergic effects that are the result of acute toxicity. Cases of mace toxicity are not as commonly reported as nutmeg toxicity.

View Article and Find Full Text PDF

3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.

View Article and Find Full Text PDF

Recent advancements in pharmaceutical research have focused on developing novel psychoactive compounds and receptor modulators that enhance therapeutic outcomes while minimizing adverse effects. This Patent Highlight examines three innovative approaches: (1) transmucosal delivery of dephosphorylated psychoactive alkaloids, (2) nonhallucinogenic serotonin receptor modulators, and (3) ergoline analogues designed for treating neurological disorders. These innovations offer breakthroughs in drug delivery, receptor targeting, and structural modifications, aiming to address challenges in the treatment of mood disorders, neurological diseases, and chronic pain while improving bioavailability and reducing side effects and hallucinogenic properties.

View Article and Find Full Text PDF

Purpose Of Review: Chronic pain affects approximately 1.5 billion people worldwide, representing the leading cause of disability and a significant financial burden on healthcare systems. Conventional treatments, such as opioids and non-steroidal anti-inflammatory drugs, are frequently linked to adverse effects, including dependency and gastrointestinal issues, and often offer limited long-term relief.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!