A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermoelectric properties of nanostructured systems based on narrow armchair graphene nanoribbons. | LitMetric

Thermoelectric properties of nanostructured systems based on narrow armchair graphene nanoribbons.

J Phys Condens Matter

Instituto de Física, Universidade Federal Fluminense, Av. Litorânea sn 24210-340, Niterói-RJ, Brazil.

Published: March 2019

Thermoelectric properties of hybrid systems composed of graphene nanoribbons (GNRs) coupled to rectangular rings or functionalized with aromatic carbon molecules are theoretically addressed here. Graphene-based nanostructures are designed with the purpose of enhancing thermopower responses compared to the thermal performance of pristine GNRs. The electronic transport is calculated using standard tight binding models and the Landauer transport formalism. We found that both semiconducting and metallic armchair nanoribbons coupled to rings exhibit a pronounced enhancement of the thermoelectric responses with comparable intensities, due to Fano antiresonance and Breit-Wigner-like resonances in the electronic transport. As expected, details of the ring geometry and ribbons are important in determining the precise chemical potential values for optimal performance. Different configurations of attached aromatic molecules (single and double molecules) at the graphene nanoribbon edges are addressed. Our findings show that the presence of a molecule induces a gap formation in the metallic pristine GNRs, and a pronounced peak of the Seebeck coefficient is revealed for low chemical potential values, independent of the molecule length. Other features on the Seebeck spectra are found to depend on the electronic nature of the GNRs and on the molecule length and distribution. We have shown that by playing with them, it is possible to design better thermoelectric devices based on GNRs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aaffb6DOI Listing

Publication Analysis

Top Keywords

thermoelectric properties
8
graphene nanoribbons
8
pristine gnrs
8
electronic transport
8
chemical potential
8
potential values
8
molecule length
8
gnrs
5
thermoelectric
4
properties nanostructured
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!