Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Detecting deep tumors inside living subject is still challenging for Cerenkov luminescence imaging (CLI). In this study, a high-sensitivity endoscopic CLI (ECLI) system was developed with a dual-mode deep cooling approach to improve the imaging sensitivity. System was characterized through a series of ex vivo studies. Furthermore, subcutaneous and orthotropic human hepatocellular carcinoma (HCC) mouse models were established for ECLI guided tumor resection in vivo. The results showed that the ECLI system had spatial resolution (62.5 μm) and imaging sensitivity (6.29 × 10 kBq/μl F-FDG). The in vivo experimental data from the HCC mouse models demonstrated that the system was effective to intraoperatively guide the surgery of deep tumors such as liver cancer. Overall, the developed system exhibits promising potential for the applications of tumor precise resection and novel nanoprobe based optical imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2018.12.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!