Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Border disease (BD) is caused by Pestivirus and characterized by severe neuropathology, and histopathologically observed severe hypomyelination. We have previously shown that small ruminants infected with border disease virus (BDV) play an important role for neuropathology and pathogenesis of severe oxidative damage in brain tissue, neuronal mtDNA; in the production of high pathologic levels of nitric oxide; in glial cell activation and stimulation of intrinsic apoptosis pathway. This study aimed to investigate the relationship between glia maturation factor beta (GMF-β) and transforming growth factor alpha (TGF-α) expressions and the causes of BDV-induced neuropathology and to investigate their role in neuropathogenesis in a way that was not presented before. Expression levels of GMF-β and TGF-α were investigated. Results of the study revealed that the levels of GMF-β (P < 0.005) and TGF-α (P < 0.005) expression in the brain tissue markedly increased in the BDV-infected animals compared to the non-infected healthy control group. While TGF-α expressions were predominantly observed in neurons, GMF-β expressions were found in astrocytes, glial cells and neurons. These results were reasonable to suggest that BDV-mediated increased GMF-β might play a pivotal role neuropathogenesis and a different type of role in the mechanism of neurodegeneration/neuropathology in the process of BD. The results also indicated that increased levels of GMF up-regulation in glial cells and neurons causes neuronal destruction, suggesting pathological pathway involving GMF-mediated brain cell cytotoxicity. It is clearly indicated that the cause of astrogliosis is due to severe TGF-a expression. This is the first study to demonstrate the expression of GMF-β and TGF-α in neurons and reactive glial cells and its association with neuropathology in BD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2019.01.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!