During erythropoiesis, haematopoietic stem cells (HSCs) differentiate in successive steps of commitment and specification to mature erythrocytes. This differentiation process is controlled by transcription factors that establish stage- and cell type-specific gene expression. In this study, we demonstrate that FUSE binding protein 1 (FUBP1), a transcriptional regulator important for HSC self-renewal and survival, is regulated by T-cell acute lymphocytic leukaemia 1 (TAL1) in erythroid progenitor cells. TAL1 directly activates the FUBP1 promoter, leading to increased FUBP1 expression during erythroid differentiation. The binding of TAL1 to the FUBP1 promoter is highly dependent on an intact GATA sequence in a combined E-box/GATA motif. We found that FUBP1 expression is required for efficient erythropoiesis, as FUBP1-deficient progenitor cells were limited in their potential of erythroid differentiation. Thus, the finding of an interconnection between GATA1/TAL1 and FUBP1 reveals a molecular mechanism that is part of the switch from progenitor- to erythrocyte-specific gene expression. In summary, we identified a TAL1/FUBP1 transcriptional relationship, whose physiological function in haematopoiesis is connected to proper erythropoiesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336336 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210515 | PLOS |
Acta Diabetol
October 2024
Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital of Jinan University, No 369, Tongfu Middle Road, Guangzhou, Guangdong, China.
Aims: Diabetes mellitus (DM) often leads to wound healing complications, partly attributed to the accumulation of advanced glycosylation end products (AGEs) that impair fibroblast function. Far Upstream Element Binding Protein 1 (FUBP1) regulates cell proliferation, migration, and collagen synthesis. However, the impact of FUBP1 on diabetic wound healing remains unknown.
View Article and Find Full Text PDFCell Death Dis
October 2024
The First Affiliated Hospital of Xi'an Jiaotong University, Center for Precision Cancer Medicine, MED-X Institute, 710000, Xi'an, China.
Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel Lindau (VHL) gene loss of function mutation, which leads to the accumulation of hypoxia-inducible factor 2α (HIF2α). HIF2α has been well-established as one of the major oncogenic drivers of ccRCC, however, its therapeutic targeting remains a challenge. Through an analysis of proteomic data from ccRCCs and adjacent non-tumor tissues, we herein revealed that Ubiquitin-Specific Peptidase 7 (USP7) was upregulated in tumor tissues, and its depletion by inhibitors or shRNAs caused significant suppression of tumor progression in vitro and in vivo.
View Article and Find Full Text PDFFront Immunol
August 2024
Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
Introduction: Pancreatic Ductal Adenocarcinoma (PDA) is one of the most aggressive malignancies with a 5-year survival rate of 13%. Less than 20% of patients have a resectable tumor at diagnosis due to the lack of distinctive symptoms and reliable biomarkers. PDA is resistant to chemotherapy (CT) and understanding how to gain an anti-tumor effector response following stimulation is, therefore, critical for setting up an effective immunotherapy.
View Article and Find Full Text PDFJ Clin Invest
August 2024
Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
Strategies beyond hormone-related therapy need to be developed to improve prostate cancer mortality. Here, we show that FUBP1 and its methylation were essential for prostate cancer progression, and a competitive peptide interfering with FUBP1 methylation suppressed the development of prostate cancer. FUBP1 accelerated prostate cancer development in various preclinical models.
View Article and Find Full Text PDFNutr Diabetes
August 2024
School of Medicine, Xiamen University, Xiamen, 361000, China.
Background: Type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) are prevalent metabolic disorders with overlapping pathophysiological mechanisms. A comprehensive understanding of the shared molecular pathways involved in these conditions can advance the development of effective therapeutic interventions.
Methods: We used two datasets sourced from the Gene Expression Omnibus (GEO) database to identify common differentially expressed genes (DEGs) between T2D and NAFLD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!