Homogeneity of amorphous solid dispersions - an example with KinetiSol.

Drug Dev Ind Pharm

a Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin , TX , USA.

Published: May 2019

KinetiSol is a high-shear, fusion-based technology capable of producing stable amorphous solid dispersions (ASDs) without the assistance of solvent. KinetiSol has proven successful with multiple challenging BCS class II and IV drugs, where drug properties like thermal instability or lack of appreciable solubility in volatile solvents make hot melt extrusion or spray drying unfeasible. However, there is a necessity to characterize the ASDs like those made by the KinetiSol process, in order to better understand whether KinetiSol is capable of homogeneously dispersing drug throughout a carrier in a short (<40 s) processing time. Our study utilized the high melting point, BCS class II drug, meloxicam, in order to evaluate the degree of homogeneity of 1, 5, and 10% w/w KinetiSol-processed samples. Powder blend homogeneity and content uniformity were evaluated, and all samples demonstrated a meloxicam concentration % relative standard deviation of ≤2.0%. SEM/EDS was utilized to map elemental distribution of the processed samples, which confirmed KinetiSol-processed materials were homogeneous at a 25 µm area. Utilizing Raman spectroscopy, we were able to verify the amorphous content of the processed samples. Finally, we utilized ssNMR H spin-lattice relaxation measurement to evaluate the molecular miscibility of meloxicam with the polymer at 1% w/w drug load, for the first time, and determined the processed sample was highly miscible at ∼200 nm scale. In conclusion, we determined the KinetiSol process is capable of producing ASDs that are homogeneously and molecularly well-dispersed drug-in-polymer at drug concentrations as low as 1% w/w.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2019.1569037DOI Listing

Publication Analysis

Top Keywords

amorphous solid
8
solid dispersions
8
kinetisol
5
homogeneity amorphous
4
dispersions example
4
example kinetisol
4
kinetisol kinetisol
4
kinetisol high-shear
4
high-shear fusion-based
4
fusion-based technology
4

Similar Publications

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

Assessing the Impacts of Drug Loading and Polymer Type on Dissolution Behavior and Diffusive Flux of GDC-6893 Amorphous Solid Dispersions.

J Pharm Sci

January 2025

Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:

It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).

View Article and Find Full Text PDF

Physical Isolation Strategy in Multi-Layer Self-Nanoemulsifying Pellets: Improving Dissolution and Drug Loading Efficiency of Ramipril.

J Pharm Sci

January 2025

Department of Pharmaceutics, College of Pharmacy, King Saud University, POBOX-2457, Riyadh 11451, Kingdom of Saudi Arabia; Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia. Electronic address:

Background And Purpose: Liquid self-nanoemulsifying drug delivery systems (SNEDDS) face challenges related to stability, handling, and storage. In particular, lipophilic and unstable drugs, such as ramipril (RMP) and thymoquinone (THQ), face challenges in oral administration due to poor aqueous solubility and chemical instability. This study aimed to develop and optimize multi-layer self-nanoemulsifying pellets (ML-SNEP) to enhance the stability and dissolution of ramipril (RMP) and thymoquinone (THQ).

View Article and Find Full Text PDF

Investigation of aerosol jet printing for the preparation of solid dosage forms.

Int J Pharm

January 2025

EPSRC CMAC Future Manufacturing Research Hub, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 99 George Street, Glasgow G1 1RD UK; The Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE UK.

Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring.

View Article and Find Full Text PDF

Purpose: Tylvalosin Tartrate (TAT), a new-generation macrolide antibiotic, undergoes significant degradation in the stomach and in vivo rapid elimination upon oral administration, resulting in poor bioavailability. This study developed TAT enteric amorphous pellets by liquid layering (TAT/EAP-LL) with pH-sensitive and burst release characteristics, to enhance drug stability in the stomach and concentration enrichment in the duodenum.

Methods: The drug loading layer, isolation layer and enteric layer were formed on the surface of the blank core pellets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!