KinetiSol is a high-shear, fusion-based technology capable of producing stable amorphous solid dispersions (ASDs) without the assistance of solvent. KinetiSol has proven successful with multiple challenging BCS class II and IV drugs, where drug properties like thermal instability or lack of appreciable solubility in volatile solvents make hot melt extrusion or spray drying unfeasible. However, there is a necessity to characterize the ASDs like those made by the KinetiSol process, in order to better understand whether KinetiSol is capable of homogeneously dispersing drug throughout a carrier in a short (<40 s) processing time. Our study utilized the high melting point, BCS class II drug, meloxicam, in order to evaluate the degree of homogeneity of 1, 5, and 10% w/w KinetiSol-processed samples. Powder blend homogeneity and content uniformity were evaluated, and all samples demonstrated a meloxicam concentration % relative standard deviation of ≤2.0%. SEM/EDS was utilized to map elemental distribution of the processed samples, which confirmed KinetiSol-processed materials were homogeneous at a 25 µm area. Utilizing Raman spectroscopy, we were able to verify the amorphous content of the processed samples. Finally, we utilized ssNMR H spin-lattice relaxation measurement to evaluate the molecular miscibility of meloxicam with the polymer at 1% w/w drug load, for the first time, and determined the processed sample was highly miscible at ∼200 nm scale. In conclusion, we determined the KinetiSol process is capable of producing ASDs that are homogeneously and molecularly well-dispersed drug-in-polymer at drug concentrations as low as 1% w/w.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03639045.2019.1569037 | DOI Listing |
AAPS PharmSciTech
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:
It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, POBOX-2457, Riyadh 11451, Kingdom of Saudi Arabia; Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia. Electronic address:
Background And Purpose: Liquid self-nanoemulsifying drug delivery systems (SNEDDS) face challenges related to stability, handling, and storage. In particular, lipophilic and unstable drugs, such as ramipril (RMP) and thymoquinone (THQ), face challenges in oral administration due to poor aqueous solubility and chemical instability. This study aimed to develop and optimize multi-layer self-nanoemulsifying pellets (ML-SNEP) to enhance the stability and dissolution of ramipril (RMP) and thymoquinone (THQ).
View Article and Find Full Text PDFInt J Pharm
January 2025
EPSRC CMAC Future Manufacturing Research Hub, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 99 George Street, Glasgow G1 1RD UK; The Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE UK.
Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring.
View Article and Find Full Text PDFPharm Res
January 2025
Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, 110016, China.
Purpose: Tylvalosin Tartrate (TAT), a new-generation macrolide antibiotic, undergoes significant degradation in the stomach and in vivo rapid elimination upon oral administration, resulting in poor bioavailability. This study developed TAT enteric amorphous pellets by liquid layering (TAT/EAP-LL) with pH-sensitive and burst release characteristics, to enhance drug stability in the stomach and concentration enrichment in the duodenum.
Methods: The drug loading layer, isolation layer and enteric layer were formed on the surface of the blank core pellets.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!