Three cobalt dipyrrin-bisphenol (DPPCo) complexes with different meso-aryl groups (pentafluorophenyl, phenyl, and mesityl) were synthesized and characterized based on their electrochemistry and spectroscopic properties in nonaqueous media. Each DPPCo undergoes multiple oxidations and reductions with the potentials, reversibility, and number of processes depending on the specific solution conditions, the specific macrocyclic substituents, and the type and number of axially coordinated ligands on the central cobalt ion. Theoretical calculations of the compounds with different coordination numbers are given in the current study in order to elucidate the cobalt-ion oxidation state and the innocence or noninnocence of the macrocyclic ligand as a function of the changes in the solvent properties and degree of axial coordination. Electron paramagnetic resonance spectra of the compounds are obtained to experimentally assess the electron spin state. An X-ray structure of the six-coordinate complex is also presented. The investigated chemical properties of DPPCo compounds under different solution conditions are compared to those of cobalt corroles, where the macrocycle and metal ion also possess formal 3- and 3+ oxidation states in their air-stable forms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b03006DOI Listing

Publication Analysis

Top Keywords

solution conditions
8
ligand noninnocence
4
cobalt
4
noninnocence cobalt
4
cobalt dipyrrin-bisphenols
4
dipyrrin-bisphenols spectroscopic
4
spectroscopic electrochemical
4
electrochemical theoretical
4
theoretical insights
4
insights indicating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!