Global population growth and changing diets increase the importance, and challenges, of reducing the environmental impacts of food production. Farmed seafood is a relatively efficient way to produce protein and has already overtaken wild fisheries. The use of protein-rich food crops, such as soy, instead of fishmeal in aquaculture feed diverts these important protein sources away from direct human consumption and creates new environmental challenges. Single cell proteins (SCPs), including bacteria and yeast, have recently emerged as replacements for plant-based proteins in salmon feeds. Attributional life cycle assessment is used to compare salmon feeds based on protein from soy, methanotrophic bacteria, and yeast ingredients. All ingredients are modeled at the industrial production scale and compared based on seven resource use and emissions indicators. Yeast protein concentrate showed drastically lower impacts in all categories compared to soy protein concentrate. Bacteria meal also had lower impacts than soy protein concentrate for five of the seven indicators. When these target meals were incorporated into complete feeds the relative trends remain fairly constant, but benefits of the novel ingredients are dampened by high impacts from the nontarget ingredients. Particularly, primary production requirements (PPR) are about equal and constant across all feeds for both analyses since PPR was driven by fishmeal and oil. The bacteria-based feed has the highest climate change impacts due to the use of methane to feed the bacteria who then release carbon dioxide. Overall, the results of this study suggest that incorporating SCP ingredients into salmon feeds can help reduce the environmental impacts of salmon production. Continued improvements in SCP production would further increase the sustainability of salmon farming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b03832 | DOI Listing |
Can J Microbiol
January 2025
Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada.
The use of probiotics is an alternative approach to mitigate the proliferation of antimicrobial resistance in aquaculture. In our study, we examined the effects of GG (ATCC 53103, LGG) delivered in-feed on the weight, length, skin mucus, and faecal microbiomes of Atlantic salmon. We also challenged the salmon with 2004-05MF26 (Asal2004) and assessed the mortality.
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
Metabolism and Applied Physiology Laboratory, Department of Kinesiology, California State University, San Marcos, San Marcos, USA.
Gravel cycling is a relatively new cycling discipline, with the Union Cycliste Internationale (UCI) hosting their first World Championships in 2022. Gravel races combine features of road racing, cyclocross, and mountain biking, including terrain of varying technical difficulty, long distances, substantial elevation gain, obstacles, and limited opportunities to stop for in-race nutrition. This study assessed hydration responses to gravel races of three different distances.
View Article and Find Full Text PDFDatabase (Oxford)
January 2025
European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, Dorset, UK.
Anadromous salmonids migrate seaward to exploit feeding and growth opportunities in marine habitats, yet how smolt biological characteristics influence their marine migratory behavior remains poorly understood. This study used 9 years of trout (Salmo trutta) population monitoring data from 15,595 tagged age-0+ parr, 1033 smolts detected migrating downstream in spring, and 99 adults detected returning from their first marine migration to the River Frome (Dorset, UK) to investigate the influence of smolt biological characteristics on their migration timing and maiden marine sojourn duration. Age-specific differences in the influence of smolt length on migration timing were found, with longer 1-year-old smolts emigrating later than their shorter counterparts within the same age class, but the opposite association existed for 2-year-old smolts.
View Article and Find Full Text PDFAquac Nutr
December 2024
Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Bergen, Norway.
Two short-term feeding trials were conducted on , with the interaction between dietary zinc (Zn) and fat level in trial 1 and with the interaction between dietary Zn and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in trial 2, focusing on postprandial plasma parameters, intestinal Zn and fat uptake and transport. After 4-week feeding interventions, samples were collected at different postprandial time points, ranging from 0 to 36/38 h after feeding. Results showed that increased Zn level in feed significantly increased the postprandial plasma Zn level in trial 1 (8-9°C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!