A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determining the Time of Cancer Recurrence Using Claims or Electronic Medical Record Data. | LitMetric

Determining the Time of Cancer Recurrence Using Claims or Electronic Medical Record Data.

JCO Clin Cancer Inform

Hajime Uno, Angel M. Cronin, and Michael J. Hassett, Dana-Farber Cancer Institute, Boston, MA; Debra P. Ritzwoller and Nikki M. Carroll, Kaiser Permanente Colorado, Denver, CO; and Mark C. Hornbrook, Kaiser Permanente Center for Health Research, Portland, OR.

Published: December 2018

AI Article Synopsis

  • - This study aimed to enhance the accuracy of determining the time of cancer recurrence using medical claims and electronic medical records (EMRs), which is difficult due to underdeveloped methods for time estimation.
  • - Researchers manually gathered actual recurrence times and analyzed various code groups from claims and EMR data for lung and colorectal cancer to develop an optimal algorithm for time estimation.
  • - The findings revealed that by selecting diverse code groups and adjusting for systematic biases, they achieved an average prediction error of about 4.8 months, which could improve future research and healthcare quality measurements.

Article Abstract

Purpose: Data from claims and electronic medical records (EMRs) are frequently used to identify clinical events (eg, cancer diagnosis, stroke). However, accurately determining the time of clinical events can be challenging, and the methods used to generate time estimates are underdeveloped. We sought to develop an approach to determine the time of a clinical event-cancer recurrence-using high-dimensional longitudinal structured data.

Methods: Manual chart abstraction provided information regarding the actual time of cancer recurrence. These data were linked to claims from Medicare or structured EMR data from the Cancer Research Network, which were used to determine time of recurrence for patients with lung or colorectal cancer. We analyzed the longitudinal profile of codes that could help determine the time of recurrence, adjusted for systematic differences between code dates and recurrence dates, and integrated time estimates from different codes to empirically derive an optimal algorithm.

Results: We identified twelve code groups that could help determine the time of recurrence. Using claims data for patients with lung cancer, the optimal algorithm consisted of three code groups and provided an average prediction error of 4.8 months. Using EMR data or applying this approach to patients with colorectal cancer yielded similar results.

Conclusion: Time estimates were improved by selecting codes not necessarily the same as those used to identify recurrence, combining time estimates from multiple code groups, and adjusting for systematic bias between code dates and recurrence dates. Improving the accuracy of time estimates for clinical events can facilitate research, quality measurement, and process improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338474PMC
http://dx.doi.org/10.1200/CCI.17.00163DOI Listing

Publication Analysis

Top Keywords

time estimates
20
determine time
16
clinical events
12
time recurrence
12
code groups
12
time
11
determining time
8
time cancer
8
recurrence
8
cancer recurrence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: