UV absorbers are very effective in the fields of antiyellowing, resistance of photocatalytic degradation, and sunscreen cosmetics. However, commercialized UV absorbers have the drawbacks of toxicity, low absorption efficiency, transparency, etc. Here, we report for the first time silicon quantum dots as full-band UV absorbers. The NH-refunctionalized silicon quantum dots with high-performance UV absorption were successfully synthesized under the synergistic effect of sodium citrate and ethanediamine, and the (NH, OH)-functionalized silicon quantum dots (SiQDs) with full-band UV absorption can be achieved by reregulating -NH and -OH groups on the surface. The as-prepared (NH, OH)-functionalized SiQDs exhibited good stability and underwent treatment of varying pH and temperature. Furthermore, experimental results demonstrated that compared to commercial water-soluble organic UV absorbers, the (NH, OH)-functionalized SiQDs showed better antiyellowing performance for polyurethane and resistance of photocatalytic degradation for rhodamine B, and presented huge application potential in sunscreen cosmetics. Finally, the UV absorption mechanism of SiQDs was explained to be mainly related to Γ → Γ direct band gap transition, which absorb UV light and release it as thermal radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b20138 | DOI Listing |
Biosensors (Basel)
January 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Anhui Huasun Energy Company, Limited, Xuancheng 242000, China.
A rear emitter with a p-type boron-doped hydrogenated amorphous silicon/nanocrystalline silicon [a-Si:H(p)/nc-Si:H(p)] stack was prepared for the silicon heterojunction (SHJ) solar cell to improve its short-circuit current density (). CO plasma treatment (CO PT) was applied to a-Si:H(p) to facilitate the crystallization of the subsequently deposited nc-Si:H(p). To evaluate the effect of the CO PT, two different nc-Si:H(p) layers with low and high crystallinity (χ) were investigated.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany.
Inverse design via topology optimization has led to innovations in integrated photonics and offers a promising way for designing high-efficiency on-chip couplers with a minimal footprint. In this work, we exploit topology optimization to design a compact vertical coupler incorporating a bottom reflector, which achieves sub-decibel coupling efficiency on the 220-nm silicon-on-insulator platform. The final design of the vertical coupler yields a predicted coupling efficiency of -0.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
We report a synthetic protocol that yields hydrogen-terminated 2D silicon nanosheets with greatly reduced siloxane (, Si-O-Si, OSi) content. These nanosheets displayed weak, broad photoluminescence centered near 610 nm with a low absolute photoluminescence quantum yield (as low as 0.2%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!