Synthesis of Silicon Quantum Dots with Highly Efficient Full-Band UV Absorption and Their Applications in Antiyellowing and Resistance of Photodegradation.

ACS Appl Mater Interfaces

Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University, Guangzhou 510642 , China.

Published: February 2019

UV absorbers are very effective in the fields of antiyellowing, resistance of photocatalytic degradation, and sunscreen cosmetics. However, commercialized UV absorbers have the drawbacks of toxicity, low absorption efficiency, transparency, etc. Here, we report for the first time silicon quantum dots as full-band UV absorbers. The NH-refunctionalized silicon quantum dots with high-performance UV absorption were successfully synthesized under the synergistic effect of sodium citrate and ethanediamine, and the (NH, OH)-functionalized silicon quantum dots (SiQDs) with full-band UV absorption can be achieved by reregulating -NH and -OH groups on the surface. The as-prepared (NH, OH)-functionalized SiQDs exhibited good stability and underwent treatment of varying pH and temperature. Furthermore, experimental results demonstrated that compared to commercial water-soluble organic UV absorbers, the (NH, OH)-functionalized SiQDs showed better antiyellowing performance for polyurethane and resistance of photocatalytic degradation for rhodamine B, and presented huge application potential in sunscreen cosmetics. Finally, the UV absorption mechanism of SiQDs was explained to be mainly related to Γ → Γ direct band gap transition, which absorb UV light and release it as thermal radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b20138DOI Listing

Publication Analysis

Top Keywords

silicon quantum
16
quantum dots
16
full-band absorption
8
antiyellowing resistance
8
resistance photocatalytic
8
photocatalytic degradation
8
sunscreen cosmetics
8
oh-functionalized siqds
8
absorption
5
synthesis silicon
4

Similar Publications

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

A rear emitter with a p-type boron-doped hydrogenated amorphous silicon/nanocrystalline silicon [a-Si:H(p)/nc-Si:H(p)] stack was prepared for the silicon heterojunction (SHJ) solar cell to improve its short-circuit current density (). CO plasma treatment (CO PT) was applied to a-Si:H(p) to facilitate the crystallization of the subsequently deposited nc-Si:H(p). To evaluate the effect of the CO PT, two different nc-Si:H(p) layers with low and high crystallinity (χ) were investigated.

View Article and Find Full Text PDF

Inverse design via topology optimization has led to innovations in integrated photonics and offers a promising way for designing high-efficiency on-chip couplers with a minimal footprint. In this work, we exploit topology optimization to design a compact vertical coupler incorporating a bottom reflector, which achieves sub-decibel coupling efficiency on the 220-nm silicon-on-insulator platform. The final design of the vertical coupler yields a predicted coupling efficiency of -0.

View Article and Find Full Text PDF

Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).

View Article and Find Full Text PDF

We report a synthetic protocol that yields hydrogen-terminated 2D silicon nanosheets with greatly reduced siloxane (, Si-O-Si, OSi) content. These nanosheets displayed weak, broad photoluminescence centered near 610 nm with a low absolute photoluminescence quantum yield (as low as 0.2%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!