The anion chemistry of lithium salts plays a pivotal role in dictating the physicochemical and electrochemical performance of solid polymer electrolytes (SPEs), thus affecting the cyclability of all-solid-state lithium metal batteries (ASSLMBs). The bis(trifluoromethanesulfonyl)imide anion (TFSI ) has long been studied as the most promising candidate for SPEs; however, the Li-ion conductivities of the TFSI-based SPEs still remain low (Li-ion transference number: ca. 0.2). In this work, we report new hydrogen-containing anions, conceived based on theoretical considerations, as an electrolyte salt for SPEs. SPEs comprising hydrogen-containing anions achieve higher Li-ion conductivities than TFSI-based ones, and those anions are electrochemically stable for various kinds of ASSLMBs (Li-LiFePO , Li-S, and Li-O batteries). This opens up a new avenue for designing safe and high-performance ASSLMBs in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201813700 | DOI Listing |
Small Methods
January 2025
Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.
Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Design of 3D-Printable Polymers Based on Regional Resources, Just Transition Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany.
Lithium batteries, essential for consumer electronics, transportation and the energy sector, still require further improvement in performance, safety, and sustainability. Traditonal organic solvent-based electrolytes, widely used in current systems, pose significant safety risks and restrict the development of next generation devices. Vitrimers are materials with unique physical and chemical properties, which offer a promising alternative to overcome these limitations, finally reaching processability and recyclability of solid electrolytes.
View Article and Find Full Text PDFGels
January 2025
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 10, 1113 Sofia, Bulgaria.
In this study, the potential to modify the phase structure and morphology of manganese dioxide synthesized via the hydrothermal route was explored. A series of samples were prepared at different synthesis temperatures (100, 120, 140, and 160 °C) using KMnO and MnSO·HO as precursors. The phase composition and morphology of the materials were analyzed using various physicochemical methods.
View Article and Find Full Text PDFCells
January 2025
European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
Hyaluronan (HA) levels are dynamically regulated homeostatically through biosynthesis and degradation. HA homeostasis is often perturbed under disease conditions. HA degradation products are thought to contribute to disease pathology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Aqueous halogen batteries are gaining recognition for large-scale energy storage due to their high energy density, safety, environmental sustainability, and cost-effectiveness. However, the limited electrochemical stability window of aqueous electrolytes and the absence of desirable carbonaceous hosts that facilitate halogen redox reactions have hindered the advancement of halogen batteries. Here, a low-cost, high-concentration 26 m Li-B-C-O aqueous solution incorporating lithium bromide (LiBr), lithium chloride (LiCl), and lithium acetate (LiOAc) was developed for aqueous batteries, which demonstrated an expanded electrochemical stability window of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!