Mechanical ventilation with high oxygen therapy (hyperoxia) is widely implemented in critical care and ICU settings. Although supplemental oxygen is beneficial to treat hypoxia, its use is also associated with poor outcomes and high mortality in patients. Lung injury due to hyperoxia exposure has been well-documented in patients, including in adults and neonates. Thus, lung injury due to hyperoxia has been extensively researched in both preclinical and clinical studies. However, hyperoxia has also been shown to be associated with hemodynamic changes in patients in ICU, including reductions in heart rate, stroke volume, and cardiac output. In addition, certain experimental studies report that hyperoxia exposure in neonates results in cardiac dysfunction in later adult life. Despite this, until recently, the impact of hyperoxia within the heart has not been well studied, or reported, specifically in adult experimental models. To close this significant gap, our lab has sought to clarify hyperoxia-induced cardiac pathophysiology in adult murine models. This review discusses the current findings regarding the cardiovascular impact of hyperoxia exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.28136 | DOI Listing |
J Appl Physiol (1985)
January 2025
Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada.
Serotonin (5-HT) is integral to signalling in areas of the brainstem controlling ventilation and is involved in central chemoreception. Selective serotonin reuptake inhibitors (SSRIs), used to effectively increase 5-HT concentrations, are commonly prescribed for depression. The effects of SSRIs on the control of breathing and the potential influence of cerebral blood flow (CBF) have not been directly assessed.
View Article and Find Full Text PDFBrain Sci
December 2024
Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada.
Background/objectives: Military aviators can be exposed to extreme physiological stressors, including decompression stress, G-forces, as well as intermittent hypoxia and/or hyperoxia, which may contribute to neurobiological dysfunction/damage. This study aimed to investigate the levels of neurological biomarkers in military aviators to assess the potential risk of long-term brain injury and neurodegeneration.
Methods: This cross-sectional study involved 48 Canadian Armed Forces (CAF) aviators and 48 non-aviator CAF controls.
J Funct Morphol Kinesiol
December 2024
Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium.
This study investigates the effects of a five-week training program on the medial gastrocnemius muscle, comparing two approaches: blood flow restriction (BFR) training and normobaric hyperoxia (oxygen supplementation). It evaluates three strengthening modalities (dynamic, isometric, and the 3/7 method) analyzing their impact on maximal voluntary contraction (MVC), muscle architecture, and perceived exertion. A total of 36 young healthy participants (21 females, 15 males) were randomized into six subgroups (n = 6 each) based on the type of contraction and oxygen condition.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
At rest, the menstrual cycle phase impacts ventilation and chemosensitivity. However, during exercise there is inconclusive evidence that the menstrual cycle phase affects ventilation or chemosensitivity. We sought to examine the influence of menstrual phase and hormonal birth control (BC) on chemosensitivity.
View Article and Find Full Text PDFMol Med
December 2024
Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China.
Background: Bronchopulmonary dysplasia (BPD), a chronic lung disease prevalent among premature infants, significantly impacts lifelong respiratory health. Macrophages, as key components of the innate immune system, play a role in lung tissue inflammation and injury, exhibiting diverse and dynamic functionalities. The M4 macrophage, a distinctive subtype primarily triggered by chemokine (C-X-C motif) ligand 4 (CXCL4), has been implicated in pulmonary inflammatory and fibrotic processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!