A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The traffic ATPase PilF interacts with the inner membrane platform of the DNA translocator and type IV pili from . | LitMetric

A major driving force for the adaptation of bacteria to changing environments is the uptake of naked DNA from the environment by natural transformation, which allows the acquisition of new capabilities. Uptake of the high molecular weight DNA is mediated by a complex transport machinery that spans the entire cell periphery. This DNA translocator catalyzes the binding and splitting of double-stranded DNA and translocation of single-stranded DNA into the cytoplasm, where it is recombined with the chromosome. The thermophilic bacterium exhibits the highest transformation frequencies reported and is a model system to analyze the structure and function of this macromolecular transport machinery. Transport activity is powered by the traffic ATPase PilF, a soluble protein that forms hexameric complexes. Here, we demonstrate that PilF physically binds to an inner membrane assembly platform of the DNA translocator, comprising PilMNO, via the ATP-binding protein PilM. Binding to PilMNO or PilMN stimulates the ATPase activity of PilF ~ 2-fold, whereas there is no stimulation when binding to PilM or PilN alone. A PilM variant defective in ATP binding still binds PilF and, together with PilN, stimulates PilF-mediated ATPase activity. PilF is unique in having three conserved GSPII (general secretory pathway II) domains (A-C) at its N terminus. Deletion analyses revealed that none of the GSPII domains is essential for binding PilMN, but GSPIIC is essential for PilMN-mediated stimulation of ATP hydrolysis by PilF. Our data suggest that PilM is a coupling protein that physically and functionally connects the soluble motor ATPase PilF to the DNA translocator via the PilMNO assembly platform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325625PMC
http://dx.doi.org/10.1002/2211-5463.12548DOI Listing

Publication Analysis

Top Keywords

dna translocator
16
atpase pilf
12
traffic atpase
8
pilf
8
inner membrane
8
dna
8
platform dna
8
transport machinery
8
assembly platform
8
atpase activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!