Pd films on soft substrates: a visual, high-contrast and low-cost optical hydrogen sensor.

Light Sci Appl

1State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China.

Published: January 2019

For the rapid development of the hydrogen economy, a reliable and low-cost hydrogen sensor appears to be extremely important. Here, we first show that a palladium film deposited on polydimethylsiloxane (PDMS) can obtain an exceedingly high-reflectance contrast of 25.78 over the entire visible band upon exposure to 4 vol% hydrogen gas (H) mixed with nitrogen gas. This high-reflectance contrast results from the surface deformation induced by the volume inflation after exposure to H, leading to the transition of the near-specular surface to a diffusing surface. In addition, a change in brightness is readable by naked eye upon exposure to H with various concentrations from 0.6 to 1 vol% under the illumination of a fluorescent tube. Furthermore, this sensor possesses an excellent recyclability and quick response time of a few seconds. Compared with Pd nanostructure-based hydrogen sensors, this visual, high-contrast and low-cost sensor is of great potential for practical hydrogen sensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325063PMC
http://dx.doi.org/10.1038/s41377-018-0114-xDOI Listing

Publication Analysis

Top Keywords

visual high-contrast
8
high-contrast low-cost
8
hydrogen sensor
8
high-reflectance contrast
8
hydrogen
6
films soft
4
soft substrates
4
substrates visual
4
low-cost optical
4
optical hydrogen
4

Similar Publications

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Purpose: This study investigated how obstacle contrast altered gait behavior of healthy younger and older adults.

Methods: Twenty normally sighted adults, 11 older (mean [standard deviation] age, 68.1 [5.

View Article and Find Full Text PDF

Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.

Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.

View Article and Find Full Text PDF

Purpose: To identify baseline clinical predictors of visual outcomes six months after acute optic neuritis using data from our completed clinical neuroprotection trial (TONE study).

Design: Secondary analysis of data from the TONE study cohort (NCT01962571).

Subjects: Total of 103 patients presenting within 10 days of a first episode of acute unilateral optic neuritis as a clinically isolated syndrome with baseline high contrast visual acuity (HCVA) < 20/40 Snellen (logMAR 0.

View Article and Find Full Text PDF

Chemiluminescent Probe for Enhanced Visualization of Renal Ischemia-Reperfusion Injury via Pyroglutamate Aminopeptidase-1 Activation.

Anal Chem

January 2025

Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.

The absence of an effective imaging tool for diagnosing renal ischemia-reperfusion injury (RIRI) severely delays its treatment, and currently, no definitive clinical interventions are available. Pyroglutamate aminopeptidase-1 (PGP-1), a potential inflammatory cytokine, has shown considerable potential as a biomarker for tracing the inflammatory process in vivo. However, its exact role in the enhanced visualization of RIRI in complex biological systems has yet to be fully established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!