Two decades of non-invasive genetic monitoring of the grey wolves recolonizing the Alps support very limited dog introgression.

Sci Rep

Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore Building, University of Lausanne, CH-1015, Lausanne, Switzerland.

Published: January 2019

Potential hybridization between wolves and dogs has fueled the sensitive conservation and political debate underlying the recovery of the grey wolf throughout Europe. Here we provide the first genetic analysis of wolf-dog admixture in an area entirely recolonized, the northwestern Alps. As part of a long-term monitoring program, we performed genetic screening of thousands of non-invasive samples collected in Switzerland and adjacent territories since the return of the wolf in the mid-1990s. We identified a total of 115 individuals, only 2 of them showing significant signs of admixture stemming from past interbreeding with dogs, followed by backcrossing. This low rate of introgression (<2% accounting for all wolves ever detected over 1998-2017) parallels those from other European populations, especially in Western Europe (<7%). Despite potential hybridization with stray dogs, few founders and strong anthropogenic pressures, the genetic integrity of the Alpine population has remained intact throughout the entire recolonization process. In a context of widespread misinformation, this finding should reduce conflicts among the different actors involved and facilitate wolf conservation. Real-time genetic monitoring will be necessary to identify potential hybrids and support an effective management of this emblematic population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335406PMC
http://dx.doi.org/10.1038/s41598-018-37331-xDOI Listing

Publication Analysis

Top Keywords

decades non-invasive
4
non-invasive genetic
4
genetic monitoring
4
monitoring grey
4
grey wolves
4
wolves recolonizing
4
recolonizing alps
4
alps support
4
support limited
4
limited dog
4

Similar Publications

Endometriosis is a chronic, estrogen-dependent disorder associated with the presence of endometrial cells mainly in the pelvic cavity, causing systemic immune inflammation, infertility, epigenetic dysregulation of differential DNA methylation, coelomic metaplasia, and pain. It affects approximately 10-12% of women. Despite decades of research, full pathophysiology, a diagnostic roadmap, and clinical management strategies for endometriosis are not yet fully elucidated.

View Article and Find Full Text PDF

In recent decades, it has become increasingly clear that mammalian gametes and early embryos are highly sensitive to metabolic substrates. With advances in single-cell sequencing, metabolomics, and bioinformatics, we now recognize that metabolic pathways not only meet cellular energy demands but also play a critical role in cell proliferation, differentiation, and fate determination. Investigating metabolic processes during oocyte maturation and early embryonic development is thus essential to advancing reproductive medicine and embryology.

View Article and Find Full Text PDF

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

Prognostication of compensated advanced chronic liver disease (cACLD) is of paramount importance for the physician-and-patient communication and for rational clinical decisions. The paper published by Dallio reports on red cell distribution width (RDW)/platelet ratio (RPR) as a non-invasive biomarker in predicting decompensation of metabolic dysfunction-associated steatotic liver disease (MASLD)-related cACLD. Differently from other biomarkers and algorithms, RPR is inexpensive and widely available, based on parameters which are included in a complete blood count.

View Article and Find Full Text PDF

Non-invasive physical plasma improves conventional wound management of cut and bite wounds in wild European hedgehogs.

Sci Rep

January 2025

Physical Plasma Medicine Laboratories, Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany.

Non-invasive physical plasma (NIPP) has been used effectively for wound healing in human medicine for over two decades. The advantages are that NIPP has few side effects, is painless and gentle on the tissue. The therapeutic effect is mediated by reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!