Objective- Vascular smooth muscle cells (VSMCs) phenotype modulation is critical for the resolution of vascular injury. Genetic and pharmacological inhibition of PI3Kγ (phosphoinositide 3-kinase γ) exerts anti-inflammatory and protective effects in multiple cardiovascular diseases. This study investigated the role of PI3Kγ and its downstream effector molecules in the regulation of VSMC phenotypic modulation and neointimal formation in response to vascular injury. Approach and Results- Increased expression of PI3Kγ was found in injured vessel wall as well in cultured, serum-activated wild-type VSMCs, accompanied by a reduction in the expression of calponin and SM22α, 2 differentiation markers of VSMCs. However, the injury-induced downregulation of calponin and SM22α was profoundly attenuated in PI3Kγ mice. Pharmacological inhibition and short hairpin RNA knockdown of PI3Kγ (PI3Kγ-KD) markedly attenuated YAP (Yes-associated protein) expression and CREB (cyclic AMP-response element binding protein) activation but improved the downregulation of differentiation genes in cultured VSMCs accompanied by reduced cell proliferation and migration. Mechanistically, activated CREB upregulated YAP transcriptional expression through binding to its promoter. Ectopic expression of YAP strikingly repressed the expression of differentiation genes even in PI3Kγ-KD VSMCs. Moreover, established carotid artery ligation and chimeric mice models demonstrate that deletion of PI3Kγ in naïve PI3Kγ mice as well as in chimeric mice lacking PI3Kγ either in bone marrow or vascular wall significantly reduced neointimal formation after injury. Conclusions- PI3Kγ controls phenotypic modulation of VSMCs by regulating transcription factor CREB activation and YAP expression. Modulating PI3Kγ signaling on local vascular wall may represent a new therapeutic approach to treat proliferative vascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393180PMC
http://dx.doi.org/10.1161/ATVBAHA.118.312212DOI Listing

Publication Analysis

Top Keywords

phenotypic modulation
12
neointimal formation
12
pi3kγ
11
pi3kγ phosphoinositide
8
phosphoinositide 3-kinase
8
vascular smooth
8
smooth muscle
8
modulation neointimal
8
creb cyclic
8
cyclic amp-response
8

Similar Publications

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

To study the impact of differing specific pathogen-free gut microbiomes (GMs) on a murine model of inflammatory bowel disease, selected GMs were transferred using embryo transfer (ET), cross-fostering (CF), and co-housing (CH). Prior work showed that the GM transfer method and the microbial composition of donor and recipient GMs can influence microbial colonization and disease phenotypes in dextran sodium sulfate-induced colitis. When a low richness GM was transferred to a recipient with a high richness GM via CH, the donor GM failed to successfully colonize, and a more severe disease phenotype resulted when compared to ET or CF, where colonization was successful.

View Article and Find Full Text PDF

Therapeutic Potential of Vanillic Acid in Ulcerative Colitis Through Microbiota and Macrophage Modulation.

Mol Nutr Food Res

January 2025

2nd Abdominal Surgery Department, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China.

This study investigated the protective effects of the dietary polyphenol vanillic acid (VA) on dextran sulfate sodium-induced acute ulcerative colitis (UC) in mice, focusing on its impact on the gut microbiota and inflammatory responses. VA was supplemented following dextran sulfate sodium administration, and key indicators, including body weight, disease activity index, colon length, spleen index, and inflammatory markers, were assessed. VA supplementation significantly alleviated UC symptoms, preserved intestinal barrier integrity, and reduced pro-inflammatory cytokine levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!