Next-generation wireless communication will require increasingly faster data links. To achieve those higher data rates, the shift towards mmWave frequencies and smaller cell sizes will play a major role. Radio-over-Fiber has been proposed as a possible architecture to allow for this shift but is nowadays typically implemented digitally, as CPRI (Common Public Radio Interface). Centralization will be important to keep next-generation architectures cost-effective and therefore shared optical amplification at the central office could be preferable. Unfortunately, limited power handling capabilities of photodetectors still hinder the shift towards centralized optical amplification. Traveling wave photodetectors (TWPDs) have been devised to allow for high-linearity, high-speed opto-electronic conversion. In this paper, an architecture is discussed consisting of such a TWPD implemented on the iSiPP25G silicon photonics platform. A monolithically integrated star coupler is added in the design to provide compact power distribution while preserving the high linearity of the TWPD. The traveling wave structure (using 16 photodetectors) has a measured 3 dB bandwidth of 27.5 GHz and a fairly flat S up to 50 GHz (less than 1 dB extra loss). Furthermore, the output referred third-order intercept point at 28 GHz, is improved from -1.79 dBm for a single Ge photodiode to 20.98 dBm by adopting the traveling wave design.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.034763DOI Listing

Publication Analysis

Top Keywords

traveling wave
16
silicon photonics
8
integrated star
8
star coupler
8
optical amplification
8
traveling
4
photonics traveling
4
wave
4
wave photodiode
4
photodiode integrated
4

Similar Publications

Elastic Wave Packets Crossing a Space-Time Interface.

Phys Rev Lett

December 2024

Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.

The interaction between waves and evolving media challenges traditional conservation laws. We experimentally investigate the behavior of elastic wave packets crossing a moving interface that separates two media with distinct propagation properties, observing the noninvariance of wavelength and frequency. Our experimental setup employs an elastic strip whose local stretching can be dynamically altered by pulling one end at a constant velocity.

View Article and Find Full Text PDF

High-speed silicon traveling-wave Mach-Zehnder modulators (MZMs) are key components to support optical fiber communication. However, one major challenge with all-silicon MZMs is to achieve efficient high-speed electro-optic (EO) modulation. The reported 3 dB bandwidth of silicon MZMs are generally below 70 GHz, with half-wave voltage ( ) around 5 V or larger, which can not support future 200 Gbaud data transmission.

View Article and Find Full Text PDF

Transient shear wave elastometry using a portable magnetic resonance sensor.

Magn Reson Med

January 2025

MRI Research Centre, Physics, University of New Brunswick, Fredericton, New Brunswick, Canada.

Purpose: Magnetic resonance elastography (MRE) provides detailed maps of tissue stiffness, helping to diagnose various health conditions, but requires the use of expensive clinical MRI scanners. Our approach utilizes compact, cost-effective portable MR sensors that offer bulk characterization of material properties in a region of interest close to the surface (within 1-2 cm). This accessible instrument could enable routine monitoring and prevention of diseases not readily evaluated with conventional tools.

View Article and Find Full Text PDF

Intranasal oxytocin for apathy in people with frontotemporal dementia (FOXY): a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b superiority trial.

Lancet Neurol

February 2025

Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:

Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.

View Article and Find Full Text PDF

Interface Acoustic Waves in 128° YX-LiNbO/SU-8/Overcoat Structures.

Micromachines (Basel)

January 2025

Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.

The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!