Developing an ultraviolet (UV) imaging spectrometer is challenging due to a low level of incident power of photon flux, large chromatic aberration, and relatively low quantum efficiency of imaging sensor in UV waveband. In this paper, a large-aperture UV (250~400 nm) Fourier transform imaging spectrometer is presented for close-range hyperspectral sensing with high spatial resolution and decent spectral resolution. An advanced design based on a modified solid Sagnac interferometer working in UV waveband of 250~400 nm is introduced to improve the interferometric stability. A large-aperture and a reflective-transmissive filtering system are used to increase the spectral purity of the incident UV radiation, and air-spaced achromatic doublets are designed to address the chromatic aberration. The finished spectrometer has a spatial resolution of 23.44 μm on the target plane, a wavelengths resolution of 1.59 nm at 250 nm, and can provide approximately 59 wavelength samples over the waveband of 250~400 nm. The proposed imaging spectrometer acquires a hyperspectral data cube through push-broom scanning in a few minutes. Examples of UV hyperspectral imaging are demonstrated with a sample of resolution test chart, and a cotton sample with vitamin C (VC) and vitamin B6 (VB6) traces. Based on the analysis of spectra, monochromatic images, and k-Means clustering results, it can be concluded that the spectrometer is capable of UV hyperspectral imaging with excellent spectral accuracy, spatial performance, compactness, and robustness. The potential applications of the proposed instrument include materials analysis and traces detection with UV spectral characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.034503 | DOI Listing |
Talanta
January 2025
Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. Electronic address:
Miniaturized optical emission spectrometric (OES) devices based on various microplasma excitation sources provide a reliable tool for in-situ elemental analysis. The key to improving analytical performance is enhancing the excitation capability of the microplasma source in these devices. Here, dielectric barrier discharge (DBD) and point discharge (PD) technologies are combined to construct an enhanced dual-stage excitation source (called DBD-PD), which improves the overall excitation efficiency and OES signal sensitivity.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
We present the design of a VMI spectrometer optimized for attosecond spectroscopy in the 0-40 eV energy range. It is based on a compact three-electrode configuration where the lens shape, size, and material have been optimized using numerical simulations to improve the spectral resolution by a factor of ∼5 relative to the initial design [Eppink and Parker, Rev. Sci.
View Article and Find Full Text PDFBMC Biol
January 2025
Centre for Ecology & Conservation, University of Exeter, Penryn, UK.
Background: The spatial and spectral properties of the light environment underpin many aspects of animal behaviour, ecology and evolution, and quantifying this information is crucial in fields ranging from optical physics, agriculture/plant sciences, human psychophysics, food science, architecture and materials sciences. The escalating threat of artificial light at night (ALAN) presents unique challenges for measuring the visual impact of light pollution, requiring measurement at low light levels across the human-visible and ultraviolet ranges, across all viewing angles, and often with high within-scene contrast.
Results: Here, I present a hyperspectral open-source imager (HOSI), an innovative and low-cost solution for collecting full-field hyperspectral data.
ACS Appl Bio Mater
January 2025
Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh 202002, Uttar Pradesh, India.
The burgeoning field of nanomedicine is exploring quantum dots for cancer theranostics. In recent years, chemically engineered copper sulfide (CuS) quantum dots (QDs) have emerged as a multifunctional platform for fluorescence-based sensors with prominent applications in imaging and chemodynamic therapy of tumor cells. The present study demonstrates the sustainable synthesis of nitrogen-embedded copper sulfide (N@CuS) quantum dots for the first time and unveils their potential application in in vitro and in vivo breast cancer management.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!