By definition, optical quantities transmittance and reflectance can basically be determined as the ratio of two flux measurements. One measurement is performed with, and the other without, the sample under test in the optical path. However, at longer wavelengths the temperature radiation of the sample itself as well as of the applied spectrometer and detector increasingly contribute to the detected radiation budget. This leads to growing systematic errors in the determination of the transmittance and reflectance of samples with Fourier transform infrared spectrometers at longer wavelengths. We present an effective method to overcome this problem by measuring a sequence of four measurements at two different flux levels. Results obtained with this method are compared to the basic ratio method over a spectral range from 200 cm to 30 cm (0.9 THz to 6 THz).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.034002DOI Listing

Publication Analysis

Top Keywords

optical quantities
8
spectral range
8
transmittance reflectance
8
longer wavelengths
8
background corrected
4
corrected measurements
4
measurements optical
4
quantities far-infrared
4
far-infrared spectral
4
range definition
4

Similar Publications

Using fiber optics as a tool for different kinds of geotechnical monitoring can be highly attractive and cost-effective when compared to conventional instruments, such as piezometers and inclinometers, among others. A single fiber optic cable may cover a larger monitoring area compared to conventional instrumentation and allows for monitoring more than one physical quantity with the same fiber optic cable. The literature provides several different examples of distributed fiber optic systems usage.

View Article and Find Full Text PDF

: This study aimed to illustrate a novel method for improving presbyopia by drinking cassiae tea. : A total of 425 eyes from 425 participants (aged 52.5 ± 9.

View Article and Find Full Text PDF

MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring.

View Article and Find Full Text PDF

Exosomes are extracellular vesicles ranging from 30 to 150 nm in diameter that contain proteins, nucleic acids and other molecules. Produced by virtually all cell types, they travel throughout the body until they reach their target, where they can trigger a wide variety of effects by transferring the molecular cargo to recipient cells. In the context of ocular physiology, exosomes play a very important role in embryological development, the regulation of homeostasis and the immune system, which is crucial for normal vision.

View Article and Find Full Text PDF

Limited research has examined the effect of meal composition on sleep. Based on previous research, we hypothesized that a low glycemic index (LGI) drink containing 50 g isomaltulose (Palatinose, GI = 32) would result in more N3 sleep, less rapid eye movement (REM) sleep, and better memory consolidation than a high glycemic index (HGI) drink containing 50 g glucose (GI = 100). Healthy males (n = 20) attended the laboratory on three occasions at least a week apart (one acclimatization night and two test nights).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!