We present a computational framework for efficient optimization-based "inverse design" of large-area "metasurfaces" (subwavelength-patterned surfaces) for applications such as multi-wavelength/multi-angle optimizations, and demultiplexers. To optimize surfaces that can be thousands of wavelengths in diameter, with thousands (or millions) of parameters, the key is a fast approximate solver for the scattered field. We employ a "locally periodic" approximation in which the scattering problem is approximated by a composition of periodic scattering problems from each unit cell of the surface, and validate it against brute-force Maxwell solutions. This is an extension of ideas in previous metasurface designs, but with greatly increased flexibility, e.g. to automatically balance tradeoffs between multiple frequencies or to optimize a photonic device given only partial information about the desired field. Our approach even extends beyond the metasurface regime to non-subwavelength structures where additional diffracted orders must be included (but the period is not large enough to apply scalar diffraction theory).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.033732DOI Listing

Publication Analysis

Top Keywords

inverse design
4
design large-area
4
large-area metasurfaces
4
metasurfaces computational
4
computational framework
4
framework efficient
4
efficient optimization-based
4
optimization-based "inverse
4
"inverse design"
4
design" large-area
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!