We report the interferometric photodetection of a phase-diffusion quantum entropy source in a silicon photonics chip. The device uses efficient and robust single-laser accelerated phase diffusion methods, and implements the unbalanced Mach-Zehnder interferometer with optimized splitting ratio and photodetection, in a 0.5 mm×1 mm footprint. We demonstrate Gbps raw entropy-generation rates in a technology compatible with conventional CMOS fabrication techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.031957 | DOI Listing |
Sci Adv
November 2019
Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea.
Direct full-color photodetectors without sophisticated color filters and interferometric optics have attracted considerable attention for widespread applications. However, difficulties of combining various multispectral semiconductors and improving photon transfer efficiency for high-performance optoelectronic devices have impeded the translation of these platforms into practical realization. Here, we report a low-temperature (<150°C) fabricated two-dimensionally pixelized full-color photodetector by using monolithic integration of various-sized colloidal quantum dots (QDs) and amorphous indium-gallium-zinc-oxide semiconductors.
View Article and Find Full Text PDFWe report the interferometric photodetection of a phase-diffusion quantum entropy source in a silicon photonics chip. The device uses efficient and robust single-laser accelerated phase diffusion methods, and implements the unbalanced Mach-Zehnder interferometer with optimized splitting ratio and photodetection, in a 0.5 mm×1 mm footprint.
View Article and Find Full Text PDFWe present a new technique for the fine alignment sensing of optical interferometers. Unlike conventional wavefront sensing systems, which use multielement photodiodes, this approach works with a single-element photodiode, in combination with a spatial light modulator (SLM) and digitally enhanced heterodyne interferometry. As all signals pass through a single photodetection and analog path, the technique exhibits high common-mode rejection to low frequency errors present in conventional systems.
View Article and Find Full Text PDFCurrent laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5-50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise.
View Article and Find Full Text PDFMultiactuated piezoelectric flextensional actuators (MAPFAs) is a fast-growing technology in development, with a wide range of applications in precision mechanics and nanotechnology. In turn, optical interferometry is an adequate technique to measure nano/micro-displacements and to characterize these MAPFAs. In this work, an efficient method for homodyne phase detection, based on a well-known Bessel functions recurrence relation, is developed, providing practical applications with a high dynamic range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!