A novel fiber optic sensing configuration for simultaneously measuring ammonia vapor (NH) concentration and relative humidity (RH) in air is proposed and experimentally demonstrated. The system comprised two silica whispering gallery mode (WGM) microsphere resonators coated with different polymer layers. One of the microspheres was dip-coated with sol gel silica polymer and another with a 0.5 % wt./vol. agarose hydrogel. WGMs in both microspheres were excited simultaneously by evanescent coupling using a single adiabatic fiber taper. The optical properties of both coating layers change due to their exposure to ammonia and water molecules in the surrounding atmosphere, resulting in the spectral shifts of the WGM resonances relevant to each of the microspheres. By measuring the relevant WGMs' spectral shifts, the NH concentration in air and the RH can be determined simultaneously. The experimentally demonstrated sensitivity of the proposed sensor array to ammonia was estimated as 19.07 pm/ppm (NH molecules in air) and its sensitivity to relative humidity as 1.07 pm/% RH. Detailed studies of the coatings' cross-sensitivity and temperature dependence are also presented. The proposed sensor array is compact, highly sensitive and potentially low cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.031829 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
Luminescent metal-organic frameworks (MOFs) with exceptional dynamics and diverse active sites possess tremendous potential in information security and anticounterfeiting applications. However, traditional MOF systems are based on broadband spectral signals with spectrum overlap, which easily leads to low-resolution signal identification, compromising the overall security level. Here, we report the coordination-defect-induced amorphous pure-MOF microsphere with switchable whispering-gallery-mode (WGM) signals as a mode-dependent security platform.
View Article and Find Full Text PDFACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
Conventional laser panel displays are developed through the mass integration of electrically pumped lasers or through the incorporation of a beam steering system with an array of optically pumped lasers. Here a novel configuration of a laser panel display consisting of a non-steered pumping beam and an array of electrically Q-switchable lasers is reported. The laser oscillator consists of a robust, self-standing, and deformable minute droplet that emits laser through Whispering-Gallery Mode resonance when optically pumped.
View Article and Find Full Text PDFbioRxiv
December 2024
Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, Massachusetts, 02139, USA.
Laser particles (LPs) emitting narrowband spectra across wide spectral ranges are highly promising for high-multiplex optical barcoding. Here, we present LPs based on indium phosphide (InP) nanodisks, operating in the near-infrared wavelength range of 740-970 nm. Utilizing low-order whispering gallery resonance modes in size-tuned nanodisks, we achieved an ultrawide color palette with 27% bandwidth utilization and nanometer-scale linewidth.
View Article and Find Full Text PDFPenicillin G detection is of great significance in medical research and disease diagnosis. Liquid crystal (LC), as a branch of sensitive materials, has a broad application prospect in the field of biosensing. Herein, a liquid crystal-coated silica microbubble resonator (LC-MBR), with high sensitivity for penicillin G detection, has been proposed and demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!