Cell Responses to Extracellular α-Synuclein.

Molecules

Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA.

Published: January 2019

Synucleins are small naturally unfolded proteins involved in neurodegenerative diseases and cancer. The family contains three members: α-, β-, and -synuclein. α-Synuclein is the most thoroughly investigated because of its close association with Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy. Until recently, the synuclein's research was mainly focused on their intracellular forms. However, new studies highlighted the important role of extracellular synucleins. Extracellular forms of synucleins propagate between various types of cells, bind to cell surface receptors and transmit signals, regulating numerous intracellular processes. Here we give an update of the latest results about the mechanisms of action of extracellular synucleins, their binding to cell surface receptors, effect on biochemical pathways and the role in neurodegeneration and neuroinflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359176PMC
http://dx.doi.org/10.3390/molecules24020305DOI Listing

Publication Analysis

Top Keywords

extracellular synucleins
8
cell surface
8
surface receptors
8
cell responses
4
extracellular
4
responses extracellular
4
extracellular α-synuclein
4
synucleins
4
α-synuclein synucleins
4
synucleins small
4

Similar Publications

Parkinson's disease is characterized by the presence of α-synuclein (α-syn) primarily containing Lewy bodies in neurons. Despite decades of extensive research on α-syn accumulation, its molecular mechanisms have remained largely unexplored. Recent studies by us and others have suggested that extracellular vesicles (EVs), especially exosomes, can mediate the release of α-syn from cells, and inhibiting this pathway could result in increased intracellular α-syn levels.

View Article and Find Full Text PDF

Microglia depletion reduces neurodegeneration and remodels extracellular matrix in a mouse Parkinson's disease model triggered by α-synuclein overexpression.

NPJ Parkinsons Dis

January 2025

Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.

Chronic neuroinflammation with sustained microglial activation occurs in Parkinson's disease (PD), yet the mechanisms and exact contribution of these cells to the neurodegeneration remains poorly understood. In this study, we induced progressive dopaminergic neuron loss in mice via rAAV-hSYN injection to cause the neuronal expression of α-synuclein, which produced neuroinflammation and behavioral alterations. We administered PLX5622, a colony-stimulating factor 1 receptor inhibitor, for 3 weeks prior to rAAV-hSYN injection, maintaining it for 8 weeks to eliminate microglia.

View Article and Find Full Text PDF

Intracellular α-synuclein assemblies are sufficient to alter nanoscale diffusion in the striatal extracellular space.

NPJ Parkinsons Dis

December 2024

Univ. Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.

α-synucleinopathies progression involves the spread of α-synuclein aggregates through the extracellular space (ECS). Single-particle tracking studies showed that α-synuclein-induced neurodegeneration increases ECS molecular diffusivity. To disentangle the consequences of neuronal loss versus α-synuclein-positive intracellular assemblies formation, we performed near-infrared single-particle tracking to characterise ECS rheology in the striatum of mouse models of α-synucleinopathies.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by the presence of extracellular amyloid plaques consisting of β-amyloid peptides (Aβ) and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau (pTau) protein in the brain. Genetic and animal studies strongly indicate that Aβ, tau and neuroinflammation play important roles in the pathogenesis of AD. Several staging models showed that NFTs correlated well with the disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!