Dimethylfumarate (DMF) has been approved the for treatment of relapsing-remitting multiple sclerosis. The mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood, notably for brain resident cells. Therefore we investigated potential direct effects of DMF and MMF on microglia and indirect effects on oligodendrocytes. Primary rat microglia were differentiated into M1-like, M2-like and M0 phenotypes and treated in vitro with DMF or MMF. The gene expression of pro-inflammatory and anti-inflammatory factors such as growth factors (IGF-1), interleukins (IL-10, IL-1β), chemokines (CCl3, CXCL-10) as well as cytokines (TGF-1β, TNFα), iNOS, and the mannose receptor (MRC1) was examined by determining their transcription level with qPCR, and on the protein level by ELISA and FACS analysis. Furthermore, microglia function was determined by phagocytosis assays and indirect effects on oligodendroglial proliferation and differentiation. DMF treatment of M0 and M1-like polarized microglia demonstrated an upregulation of gene expression for IGF-1 and MRC1, but not on the protein level. While the phagocytic activity remained unchanged, DMF and MMF treated microglia supernatants led to an enhanced proliferation of oligodendrocyte precursor cells (OPC). These results suggest that DMF has anti-inflammatory effects on microglia which may result in enhanced proliferation of OPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358967PMC
http://dx.doi.org/10.3390/ijms20020325DOI Listing

Publication Analysis

Top Keywords

gene expression
12
dmf mmf
12
indirect effects
8
protein level
8
enhanced proliferation
8
microglia
7
dmf
7
fumaric acids
4
acids directly
4
directly influence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!