A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Introducing the concept of spiral microbeam radiation therapy (spiralMRT). | LitMetric

Introducing the concept of spiral microbeam radiation therapy (spiralMRT).

Phys Med Biol

European Synchrotron Radiation Facility, Biomedical beamline ID17, Grenoble, France. Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom. Author to whom any correspondence should be addressed.

Published: March 2019

Motivation: With interlaced microbeam radiation therapy (MRT) a first kilovoltage radiotherapy (RT) concept combining spatially fractionated entrance beams and homogeneous dose distribution at the target exists. However, this technique suffers from its high sensitivity to positioning errors of the target relative to the radiation source. With spiral microbeam radiation therapy (spiralMRT), this publication introduces a new irradiation geometry, offering similar spatial fractionation properties as interlaced MRT, while being less vulnerable to target positioning uncertainties.

Methods: The dose distributions achievable with spiralMRT in a simplified human head geometry were calculated with Monte Carlo simulations based on Geant4 and the dependence of the result on the microbeam pitch, total field size, and photon energy were analysed. A comparison with interlaced MRT and conventional megavoltage tomotherapy was carried out.

Results: SpiralMRT can deliver homogeneous dose distributions, while using spatially fractionated entrance beams. The valley dose of spiralMRT entrance beams is by up to 40% lower than the corresponding tomotherapy dose, thus indicating a better normal tissue sparing. The optimum photon energy is found to be around [Formula: see text].

Conclusions: SpiralMRT is a promising approach to delivering homogeneous dose distributions with spatially fractionated entrance beams, possibly decreasing normal tissue side effects in hypofractionated RT.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/aaff23DOI Listing

Publication Analysis

Top Keywords

entrance beams
16
microbeam radiation
12
radiation therapy
12
spatially fractionated
12
fractionated entrance
12
homogeneous dose
12
dose distributions
12
spiral microbeam
8
therapy spiralmrt
8
interlaced mrt
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!