Cell culture process optimization is a critical solution to most of the challenges faced by the pharmaceutical manufacturing. One of the major problems encountered in large-scale production of therapeutic proteins is misfolded protein production. The accumulation of misfolded therapeutic proteins is an immunogenic signal and a risk factor for immunogenicity of the final product. The aim of this study was the statistical optimization of three-phasic temperature shift and timing for enhanced production of correctly folded Fc-fusion protein. The effect of culture temperatures were investigated using the biphasic culture system. Box-Behnken design was then used to compute temperature and time of shifting optimum. Response surface methodology revealed that maximum production with low level of misfolded protein was achieved at two-step temperature shift from 37°C to 30°C during the late logarithmic phase and 30°C to 28°C in the mid-stationary phase. The optimized condition gave the best results of 1860 mg L-1 protein titer with 24.5% misfolding level. The validation experiments were carried out under optimal conditions with three replicates and the protein misfolding level was decreased by two times while productivity increased by ~ 1.3-fold. Large-scale production in 250 L bioreactor under the optimum conditions was also verified the effectiveness and the accuracy of the model. The results showed that by utilizing two-step temperature shift, productivity and the quality of target protein have been improved simultaneously. This model could be successfully applied to other products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334962 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210712 | PLOS |
Protein Expr Purif
January 2025
Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:
Dectin-1 (CLEC7A), a C-type lectin-like receptor that recognizes β-1,3 glucans, has a key role in the innate immune system. While the lectin domain of mouse Dectin-1 has been solubilized and refolded from inclusion bodies in Escherichia coli, similar refolding of the human Dectin-1 lectin domain is hindered by the formation of misfolded multimers with aberrant intermolecular disulfide bonds. The aim of this study was to develop a method for the large-scale production of the human Dectin-1 lectin domain.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Council for Geoscience, Private Bag X112, Pretoria, 0001, South Africa.
One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil.
Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.
View Article and Find Full Text PDFViruses
December 2024
School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia.
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!