Nanostructured carbons with different pore geometries are prepared with a liquid-free nanocasting method. The method uses gases instead of liquid to disperse carbon precursors, leach templates, and remove impurities, minimizing synthetic procedures and the use of chemicals. The method is universal and demonstrated by the synthesis of 12 different porous carbons with various template sources. The effects of pore geometries in catalysis can be isolated and investigated. Two of the resulted materials with different pore geometries are studied as supports for Ru clusters in the hydrogenolysis of 5-hydroxymethylfurfural (HMF) and electrochemical hydrogen evolution (HER). The porous carbon-supported Ru catalysts outperform commercial ones in both reactions. It was found that Ru on bottleneck pore carbon shows a highest yield in hydrogenolysis of HMF to 2,5-dimethylfuran (DMF) due to a better confinement effect. A wide temperature operation window from 110 to 140 °C, with over 75% yield and 98% selectivity of DMF, has been achieved. Tubular pores enable fast charge transfer in electrochemical HER, requiring only 16 mV overpotential to reach current density of 10 mA·cm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b09399DOI Listing

Publication Analysis

Top Keywords

pore geometries
12
nanoporous carbon
4
carbon liquid-free
4
liquid-free synthesis
4
synthesis geometry-dependent
4
geometry-dependent catalytic
4
catalytic performance
4
performance nanostructured
4
nanostructured carbons
4
pore
4

Similar Publications

Porous materials and structures, such as subterranean fire ant nests, are abundant in nature. It is hypothesized that these structures likely have evolved biological adaptations that enhance their collapse resistance. This research aims to elucidate the collapse-resistant mechanisms of pore geometries in fire ant nests.

View Article and Find Full Text PDF

The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical Nanopores.

Langmuir

December 2024

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9.

We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface.

View Article and Find Full Text PDF

Hydrophobic materials have been fabricated by DLP vat photopolymerization of isobornyl acrylate-based resins with chemical modification and/or surface geometry engineering. Fluorinated and polydimethylsiloxane (PDMS)-based acrylic monomers are used for chemical modification and are incorporated into the printed materials. The water wettability was significantly reduced and plateaued with as low as 5% (w/w) of the auxillary hydrophobic monomer.

View Article and Find Full Text PDF

Multiphysics modelling of the impact of skin deformation and strain on microneedle-based transdermal therapeutic delivery.

Acta Biomater

December 2024

UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland. Electronic address:

Microneedle patches (MNs) hold enormous potential to facilitate the minimally-invasive delivery of drugs and vaccines transdermally. However, the micro-mechanics of skin deformation significantly influence the permeation of therapeutics through the skin. Previous studies often fail to appreciate the complexities in microneedle-skin mechanical interactions.

View Article and Find Full Text PDF

Hetero-Oligomeric Protein Pores for Single-Molecule Sensing.

J Membr Biol

December 2024

Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Research Program, Thiruvananthapuram, 695014, India.

Protein nanopores are emerging as versatile single-molecule sensors with broad applications in DNA and protein sequencing. However, their narrow size restricts the range of detectable analytes, necessitating the development of advanced nanopores to broaden their applications in biotechnology. This review highlights a natural hetero-oligomeric porin, Nocardia farcinica porin AB (NfpAB), based on the Gram-positive mycolata, Nocardia farcinica.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!