Clinical Validation of Targeted Solid Tumor Profiling.

Methods Mol Biol

Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium.

Published: June 2019

Large-scale tumor profiling studies have generated massive amounts of data that have been instrumental for the detection of recurrent driver mutations in many tumor types. These driver mutations as well as the concurrent passenger mutations are now being used for a more accurate diagnosis of the tumor and prognosis for the patient. Moreover, therapeutic inhibitors toward specific mutations are already on the market and many clinical trials are ongoing to approve novel therapeutic drugs. The broad-range identification of these somatic mutations is key to this tailored personalized medicine approach, which preferentially has to be performed by a multigene multihotspot method such as massive parallel sequencing, also called next generation sequencing (NGS). The implementation of NGS in molecular diagnostics of tumor profiling however, requires a firm validation to minimize the occurrence of false positives and false negatives, thereby yielding highly accurate and robust clinical data.Here, we describe the different performance characteristics as well as quality metrics that should be analyzed for the robust diagnostic validation of tumor profiling in order to meet the requirements of international standards specific for medical laboratories, such as the ISO15189:2012 standard. These metrics include assays that assess the precision, limit of detection, accuracy, sensitivity, specificity, and robustness of the entire workflow from DNA enrichment up to the final report.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9004-7_6DOI Listing

Publication Analysis

Top Keywords

tumor profiling
16
driver mutations
8
tumor
6
mutations
5
clinical validation
4
validation targeted
4
targeted solid
4
solid tumor
4
profiling
4
profiling large-scale
4

Similar Publications

Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness.

View Article and Find Full Text PDF

Human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HPV-positive HNSCC) has distinct biological characteristics from HPV-negative HNSCC. Using an AI-based analytical platform on meta cohorts, we profiled expression patterns of viral transcripts and HPV viral genome integration, and classified the tumor microenvironment (TME). Unsupervised clustering analysis revealed five distinct and novel TME subtypes across patients (immune-enriched, highly immune and B-cell enriched, fibrotic, immune-desert, and immune-enriched luminal).

View Article and Find Full Text PDF

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.

View Article and Find Full Text PDF

: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!