Graphene oxide with in-situ grown Prussian Blue as an electrochemical probe for microRNA-122.

Mikrochim Acta

College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.

Published: January 2019

An electrochemical biosensor for microRNA was constructed on the basis of direct growth of electroactive Prussian Blue (PB) on graphene oxide (GO). A mercapto-modified probe DNA that is complementary to the hepatocellular carcinoma biomarker microRNA-122 was firstly anchored on a gold electrode (AuE). Then, GO (with its large surface and multiple active sites) was adsorbed on probe DNA through π-interaction. Subsequently, the PB nanoparticles were directly grown on GO via alternative dipping the electrode in solutions of FeCl and hexacyanoferrate(III). Upon incubation of the resulting electrode with a solution of microRNA-122, the probe DNA on the electrode interacts with microRNA-122 to form a rigid duplex. This results in the release of electroactive PB/GO from the sensing interface and a decrease in current, typically measured at 0.18 V (vs. Ag/AgCl (3 M KCl)). The sensor covers the 10 fM to 10 nM microRNA-122 concentration range and has a 1.5 fM detection limit. The method was successfully applied to the determination of microRNA-122 in real biological samples. Graphical abstract Graphene oxide with in-situ grown Prussian Blue is applied as an electrochemical probe for the analysis of microRNA-122.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-018-3204-9DOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
prussian blue
12
probe dna
12
oxide in-situ
8
in-situ grown
8
grown prussian
8
electrochemical probe
8
microrna-122
7
probe
5
blue electrochemical
4

Similar Publications

Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.

View Article and Find Full Text PDF

Effects of porous hedgehog-like morphology and graphene oxide on the cycling stability and rate performance of CoO/NiO microspheres.

Nanoscale Horiz

January 2025

Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, P. R. China.

A porous hedgehog-like CoO/NiO/graphene oxide (denoted as PHCNO/GO) microsphere was prepared by a facile solvothermal method, followed by an annealing treatment under argon atmosphere. Benefiting from the thin CoO/NiO nanosheets with a large specific surface area, abundant pores distributed between the CoO/NiO nanosheets, and GO firmly wrapped around the surface of PHCNO microspheres, the PHCNO/GO microspheres showed excellent lithium storage performance. The CoO/NiO nanosheets provided numerous active sites, achieving a high reversible specific capacity.

View Article and Find Full Text PDF

The Proximal Protonation Source in Cu-NHx-C Single Atom Catalysts Selectively Boosts CO2 to Methane Electroreduction.

Angew Chem Int Ed Engl

January 2025

Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.

Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.

View Article and Find Full Text PDF

Wirelessly driven flexible actuators are crucial to the development of flexible robotic crawling. However, great challenges still remain for the crawling of flexible actuators in complex environments. Herein, we reported a wireless flexible actuator synergistically driven by wireless power transmission (WPT) technology and near-infrared (NIR) light, which consists of a poly(dimethylsiloxane)-graphene oxide (PDMS-GO) composite layer, eutectic gallium-indium alloy (EGaIn), a PDMS layer, and a polyimide (PI) layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!