A Conflicted Tale of Two Novel AR Antagonists In Vitro and In Vivo: Pyrifluquinazon Versus Bisphenol C.

Toxicol Sci

Reproductive Toxicology Branch, Toxicology Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711.

Published: April 2019

Chemicals that disrupt androgen receptor (AR) function in utero induce a cascade of adverse effects in male rats including reduced anogenital distance, retained nipples, and reproductive tract malformations. The objective of this study was to compare the in vitro and in utero activities of two novel AR antagonists, bisphenol C (BPC) and pyrifluquinazon (PFQ). In vitro, BPC was as potent an AR antagonist as hydroxyflutamide. Furthermore, BPC inhibited fetal testis testosterone production and testis gene expression ex vivo. However, when BPC was administered at 100 and 200 mg/kg/d in utero, the reproductive tract of the male offspring was minimally affected. None of the males displayed reproductive malformations. For comparison, in utero administration of flutamide has been shown to induce malformations in 100% of males at 6 mg/kg/d. In vitro, PFQ was several orders of magnitude less potent than BPC, vinclozolin, or procymidone. However, in utero administration of 12.5, 25, 50, and 100 mg PFQ/kg/d on GD 14-18 induced antiandrogenic effects at all dosage levels and 91% of the males displayed reproductive malformation in the high dose group. Overall, BPC was ∼380-fold more potent than PFQ in vitro, whereas PFQ was far more potent than BPC in utero. Incorporating toxicokinetic and toxicodynamic data into in vitro to in vivo extrapolations would reduce the discordance between the in vitro and in utero effects of PFQ and BPC and combining in vitro results with a short-term Hershberger assay would reduce the uncertainty in predicting the in utero effects of antiandrogenic chemicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551625PMC
http://dx.doi.org/10.1093/toxsci/kfz010DOI Listing

Publication Analysis

Top Keywords

novel antagonists
8
vitro
8
vitro vivo
8
utero
8
reproductive tract
8
vitro utero
8
bpc
8
pfq vitro
8
males displayed
8
displayed reproductive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!