Telaprevir, a protease inhibitor, was used alongside PEGylated interferon-α and ribavirin to treat hepatitis C viral infections. The triple regimen proved successful; however, the appearance of severe skin reactions alongside competition from newer drugs restricted its use. Skin reactions presented with a delayed onset indicative of a T-cell mediated reaction. Thus, the aim of this study was to investigate whether telaprevir and/or its diastereomer, which is generated in humans, activates T-cells. Telaprevir in its S-configured therapeutic form and the R-diastereomer were cultured directly with peripheral blood mononuclear cells from healthy donors prior to the generation of T-cell clones by serial dilution. Drug-specific CD4+ and CD8+ T-cell clones responsive to telaprevir and the R-diastereomer were generated and characterized in terms of phenotype and function. The clones proliferated with telaprevir and diastereomer concentrations of 5-20 µM and secreted IFN-γ, IL-13, and granzyme B. In contrast, the telaprevir M11 metabolite did not stimulate T-cells. The CD8+ T-cell response was MHC I-restricted and dependent on the presence of soluble drug. Flow cytometric analysis showed that clones expressed chemokine receptors CCR4 (skin homing) and CXCR3 (migration to peripheral tissue) and 1 of 3 distinct TCR Vβs; TCR Vβ 2, 5.1, or 22. These data show the propensity of both R- and S-forms of telaprevir to generate skin-homing cytotoxic T-cells that may induce the adverse reactions observed in human patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/toxsci/kfz007 | DOI Listing |
Arq Gastroenterol
January 2025
Universidade Federal de São Paulo, São Paulo, SP, Brasil.
Background: Liver biopsy (LB) is still the gold standard method for assessing hepatic fibrosis (HF), associated diseases, and liver inflammation. Nowadays, noninvasive techniques such as Acoustic radiation force impulse (ARFI) elastography have been introduced instead of liver biopsy. However, there are controversies about the time it should be performed after treatment for hepatitis C virus (HCV).
View Article and Find Full Text PDFEur J Pharm Sci
February 2025
Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia. Electronic address:
Arch Biochem Biophys
January 2025
Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China. Electronic address:
Iron overload-dependent ferroptosis is believed to contribute to the brain injury of ischemia/reperfusion (I/R), whereas toll-like receptor 4 (TLR4) can exert pro-ferroptosis effect via inhibiting the glutathione peroxidase 4 (GPX4) level, but the mechanisms behind these phenomenon are not fully elucidated. Tumor necrosis factor receptor correlated factor 3-interaction Jun amino-terminal kinase [JNK]-activating modulator (T3JAM) can activate specific molecule and its downstream signaling pathways, including TLR4. This study aims to explore whether targeting T3JAM can reduce I/R-induced ferroptosis in brain via downregulating TLR4.
View Article and Find Full Text PDFInt Immunopharmacol
November 2024
Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China. Electronic address:
J Am Chem Soc
June 2024
Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang 222000, China.
Efficient transformation of platform chemicals into key intermediates has been increasingly important for the pharmaceutical industry. The development of the catalytic reduction of abundant carboxylic acids with molecular hydrogen has been of both practical and theoretical value. We herein report the homogeneous hydrogenation of dicarboxylic acids with the strategy of desymmetrization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!