A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure-based prediction of post-translational modification cross-talk within proteins using complementary residue- and residue pair-based features. | LitMetric

Structure-based prediction of post-translational modification cross-talk within proteins using complementary residue- and residue pair-based features.

Brief Bioinform

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.

Published: March 2020

Post-translational modification (PTM)-based regulation can be mediated not only by the modification of a single residue but also by the interplay of different modifications. Accurate prediction of PTM cross-talk is a highly challenging issue and is in its infant stage. Especially, less attention has been paid to the structural preferences (except intrinsic disorder and spatial proximity) of cross-talk pairs and the characteristics of individual residues involved in cross-talk, which may restrict the improvement of the prediction accuracy. Here we report a structure-based algorithm called PCTpred to improve the PTM cross-talk prediction. The comprehensive residue- and residue pair-based features were designed for paired PTM sites at the sequence and structural levels. Through feature selection, we reserved 23 newly introduced descriptors and 3 traditional descriptors to develop a sequence-based predictor PCTseq and a structure-based predictor PCTstr, both of which were integrated to construct our final prediction model. According to pair- and protein-based evaluations, PCTpred yielded area under the curve values of approximately 0.9 and 0.8, respectively. Even when removing the distance preference of samples or using the input of modeled structures, our prediction performance was maintained or moderately reduced. PCTpred displayed stable and reliable improvements over the state-of-the-art methods based on various evaluations. The source code and data set are freely available at https://github.com/Liulab-HZAU/PCTpred or http://liulab.hzau.edu.cn/PCTpred/.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bby123DOI Listing

Publication Analysis

Top Keywords

post-translational modification
8
residue- residue
8
residue pair-based
8
pair-based features
8
ptm cross-talk
8
cross-talk
5
prediction
5
structure-based prediction
4
prediction post-translational
4
modification cross-talk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!