Glioblastoma (GBM) is the most aggressive malignant glioma and most lethal form of human brain cancer (Clin J Oncol Nurs. 2016;20:S2). GBM is also one of the most expensive and difficult cancers to treat by the surgical resection, local radiotherapy, and temozolomide (TMZ) and still remains an incurable disease. Oncomine platform analysis and Gene Expression Profiling Interactive Analysis (GEPIA) show that the expression of transcription factor EB (TFEB) was significantly increased in GBMs and in GBM patients above stage IV. TFEB requires the oligomerization and localization to regulate transcription in the nucleus. Also, the expression and oligomerization of TFEB proteins contribute to the resistance of GBM cells to conventional chemotherapeutic agents such as TMZ. Thus, we investigated whether the combination of vorinostat and melatonin could overcome the effects of TFEB and induce apoptosis in GBM cells and glioma cancer stem cells (GSCs). The downregulation of TFEB and oligomerization by vorinostat and melatonin increased the expression of apoptosis-related genes and activated the apoptotic cell death process. Significantly, the inhibition of TFEB expression dramatically decreased GSC tumor-sphere formation and size. The inhibitory effect of co-treatment resulted in decreased proliferation of GSCs and induced the expression of cleaved PARP and p-γH2AX. Taken together, our results definitely demonstrate that TFEB expression contributes to enhanced resistance of GBMs to chemotherapy and that vorinostat- and melatonin-activated apoptosis signaling in GBM cells by inhibiting TFEB expression and oligomerization, suggesting that co-treatment of vorinostat and melatonin may be an effective therapeutic strategy for human brain cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpi.12556 | DOI Listing |
Viruses
January 2025
Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.
Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.
View Article and Find Full Text PDFPharmaceutics
December 2024
Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
Background/objectives: Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
: The multiple drug-resistant phenomenon has long since plagued the effectiveness of various chemotherapies used in the treatment of patients with glioblastoma (GBM), which is still incurable to this day. ATP-binding cassette (ABC) transporters function as drug transporters and have been touted to be the main culprits in developing resistance to xenobiotic drugs in GBM. : This review systematically analyzed the efficacy of ABC transporters against various anticancer drugs from 16 studies identified from five databases (PubMed, Medline, Embase, Scopus, and ScienceDirect).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore.
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China.
Cervical cancer poses a substantial threat to women's health, underscoring the necessity for effective therapeutic agents with low toxicity that specifically target cancer cells. As cancer progresses, increased glucose consumption causes glucose scarcity in the tumor microenvironment (TME). Consequently, it is imperative to identify pharmacological agents capable of effectively killing cancer cells under conditions of low glucose availability within the TME.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!