Babchi essential oil (BEO) is a valuable essential oil reported to possess a variety of biological activities such as antitumor, anti inflammatory, immunomodulatory, antioxidant, antifungal and antibacterial properties. Due to its anti-microbial properties, this oil possesses an immense potential for the treatment of dermatological disorders. Further, it has minimal tendency to develop resistance, a common issue with most of the antibiotics. However, its highly viscous nature and poor stability in the presence of light, air and high temperature, limits its practical applications. To surmount these issues, this research aims to encapsulate BEO in ethyl cellulose (EC) microsponges for enhanced stability, antibacterial effect and decreased dermal toxicity. The quasi emulsion solvent evaporation technique was used for fabrication of the BEO microsponges employing EC as polymer, polyvinyl alcohol (PVA) as stabilizer and dichloro methane (DCM) as solvent. The effect of formulation variables such as the amount of EC and PVA were also investigated. The prepared microformulations were evaluated for production yield, encapsulation efficiency, particle size and in vitro release. In vitro cytotoxicity was also checked to assess dermal safety of BEO microsponges. Results revealed that all the dispersions were in micro size range (20.44 ± 3.13 μm to 41.75 ± 3.65 μm), with good encapsulation efficiency (87.70 ± 1.20% of F2) and controlled release profile (cumulative drug release 73.34 ± 1.76%). Field emission scanning electron microscopy results showed that the microsponges possessed a spherical uniform shape with a spongy structure. Results of cytotoxicity study indicated that the prepared microsponges were safer on dermal cells in comparison to pure BEO. The optimized formulation was also evaluated for in vitro antimicrobial assay against dermal bacteria like Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, which confirmed their enhanced antibacterial activity. Furthermore, the results of photostability and stability analysis indicated improved stability of BEO loaded microsponges. Hence, encapsulation of BEO in microsponges resulted in efficacious carrier system in terms of stability as well as safety of this essential oil alongwith handling benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298628 | PMC |
http://dx.doi.org/10.1016/j.jfda.2018.07.006 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
KIPS, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India.
The discovery of novel counteractive pharmaceuticals, which have recently generated much interest, has played a significant role in the development of drugs derived from herbal medicines or botanical sources. Paederia foetida (P. foetida) is one such example of a role in both traditional and traditional medicine.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Thyme and oregano essential oils (EOs) and their components have numerous applications in the pharmaceutical, food, and cosmetic industries owing to their antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and immunological properties. We attempted to create new chemotypes through the hybridization of thyme and oregano for functional EO research and product development. Here, we used interspecific hybridization to create new thyme and oregano germplasms with new EO chemotypes.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China. Electronic address:
Essential fatty acids (EFAs) in edible oils are crucial for human nutrition. However, their high unsaturation renders edible oils susceptible to oxidation during storage and processing. The addition of lipophilic antioxidants is an effective strategy to inhibit oxidation and safeguard the nutritional integrity of edible oils.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye. Electronic address:
Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear.
View Article and Find Full Text PDFFood Res Int
January 2025
Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México. Electronic address:
Antimicrobial active packaging plays a key role in food quality and safety. The addition of antimicrobial agents in packaging production aims to release these agents from film to food, thereby preventing, reducing, or eliminating the contamination caused by pathogens or food spoilage microorganisms. This review provides an overview of the antimicrobial active packaging and gives an insight of the antimicrobials that have been used to manufacture antimicrobial active films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!