Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia that can lead to long-term complications including heart diseases, stroke, retinopathy, and renal failure. Treatment strategies include stimulating glucose uptake and controlling blood glucose level. Bofutsushosan (BOF) and Daisaikoto (DAI) are two herb-based kampo medicines that have been demonstrated to improve metabolism-associated disorders including obesity, hyperlipidemia, and nonalcoholic fatty liver. Given their bioactivities against metabolic syndromes, we explored in this study the effect of BOF and DAI extracts on glucose absorption and used them as source to identify phytochemical stimulator of glucose absorption. Glucose uptake and mechanistic studies were evaluated in differentiated C2C12 skeletal muscle cells, and HPLC analysis was used to determine the molecular bioactive constituents. Our results indicated that the ethanolic extracts of BOF and DAI (BOFEE and DAIEE, respectively) enhanced the glucose uptake ratio in the differentiated C2C12 cells, and further analysis identified the flavone baicalin as a major constituent capable of efficiently stimulating glucose absorption. Mechanistic studies revealed that the effect from baicalin involved the activation of IRS-1 and GLUT-4, and implicated the AMPK, PI3K/Akt, and MAPK/ERK signaling cascades. Due to its potency, we suggest that baicalin merit further evaluation as a potential candidate anti-hyperglycemic agent for the treatment and management of T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298638PMC
http://dx.doi.org/10.1016/j.jfda.2018.07.002DOI Listing

Publication Analysis

Top Keywords

glucose uptake
16
glucose absorption
12
glucose
8
stimulating glucose
8
bof dai
8
mechanistic studies
8
identification baicalin
4
baicalin bofutsushosan
4
bofutsushosan daisaikoto
4
daisaikoto potent
4

Similar Publications

Exogenous glucose oxidation is reduced 55% during aerobic exercise after three days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucoseoxidation and physical performance compared to energy balance (BAL).

View Article and Find Full Text PDF

Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.

View Article and Find Full Text PDF

Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.

View Article and Find Full Text PDF

Constipation is correlated with diminished cognitive function, revealing a possible rectum-brain connection. In this counter-balanced crossover trial, 13 elite triathletes underwent a Stroop test to assess cognitive function and executive control. The Stroop test was conducted both with and without magnesium oxide intake, with a 1-week washout period between sessions.

View Article and Find Full Text PDF

Enabling tumor-specific drug delivery by targeting the Warburg effect of cancer.

Cell Rep Med

January 2025

Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA. Electronic address:

Metabolic reprogramming of tumor cells is an emerging hallmark of cancer. Among all the changes in cancer metabolism, increased glucose uptake and the accumulation of lactate under normoxic conditions (the "Warburg effect") is a common feature of cancer cells. In this study, we develop a lactate-responsive drug delivery platform by targeting the Warburg effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!