Assessment of genetic diversity in Went accessions based on RAPD and ISSR markers.

J Genet Eng Biotechnol

C G Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, Gujarat 394350, India.

Published: June 2018

Sugarcane is susceptible to red rot disease caused by phytopathogenic fungus Went which ultimately affect the economy of farmers as well as sugar based industry. One of the various ways to control this devastating disease is to develop disease resistance sugarcane cultivar and this requires the complete understanding of genetic makeup of pathogen. Although South Gujarat is well known sugarcane cultivating area, less published data can be found about PCR-based genetic diversity in prevalent accessions. So, present investigation aims at finding molecular variation among the ten accessions of using RAPD and ISSR molecular markers. A total of 35 RAPD and 39 ISSR primers were screened across 10 accessions, of which 15 RAPD and 21 ISSR primers have showed consistent amplification. Statistics related to genetic variation were estimated using NTSYS-PC by means of Dice's coefficient. The results revealed 80.6% and 68.07% polymorphism and similarity coefficient ranged from 0.43 to 0.91 and 0.73 to 0.93 in RPAD and ISSR analysis respectively. The dendrogram generated using RAPD, ISSR and combined RAPD-ISSR grouped accessions into different clusters which reveal considerable level molecular variation among the accessions. It is also evident from PCA plots that accessions are rather dispersed with tested marker systems indicating good genetic base. So, in nut shell, we found considerable genetic variation and relatedness within accessions collected from different areas of south Gujarat, India using RAPD and ISSR markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296630PMC
http://dx.doi.org/10.1016/j.jgeb.2017.11.006DOI Listing

Publication Analysis

Top Keywords

rapd issr
24
genetic diversity
8
accessions
8
issr markers
8
south gujarat
8
molecular variation
8
accessions rapd
8
issr primers
8
genetic variation
8
issr
7

Similar Publications

<b>Background and Objective:</b> Black soybeans [<i>Glycine max</i> (L.) Merr] are among the important crops, but the cultivated resources are normally low-yielding, susceptible to diseases and low profit. Therefore, it is necessary to evaluate the genetic diversity of black soybean germplasms for breeding programs.

View Article and Find Full Text PDF

Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.

View Article and Find Full Text PDF

In this research, we analyzed Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeats (ISSR) and Sequence-related amplified polymorphism (SRAP) markers to evaluate the genetic diversity of eighteen different onion genotypes with various resistant levels to FOC. The results showed that the polymorphism means between RAPD primers was 61.11 to 81.

View Article and Find Full Text PDF

The current study aimed to detect the mutagenic impacts of aflatoxin B1 (AFB1), which is produced by Aspergillus group fungi, via a high-plant genotoxicity test. Different durations of treatment (3 h, 6 h, and 12 h) were used to treat the Vicia faba root tips with varying concentrations of Aflatoxin B1 (AFB1) following the approved protocol for plant assays published by the International Program on Chemical Safety (IPCS) and the World Health Organization (WHO). The data obtained indicated that AFB1 not only has the ability to induce various alterations in the process of mitosis, ranging from increasing to decreasing mitotic and phase indices but also leads to many mitotic aberrations.

View Article and Find Full Text PDF

The cultivation of alfalfa is crucial for farmers as it is an excellent forage crop with a high nitrogen-fixing capacity, making it indispensable in crop rotations. Breeding programs face challenges in advancing more rapidly in genetic diversity to achieve a higher heterosis effect and, consequently, greater yield. In this study, we used 30 alfalfa varieties, which were used for molecular analyses by 5 ISSR primers and 13 RAPD primers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!