Higher maternal plasma folate, vitamin B and homocysteine levels in women with preeclampsia.

J Hum Hypertens

Mother and Child Health Department, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune, 411043, India.

Published: May 2019

Micronutrients like vitamin B and folate play an important role in nucleic acid metabolism, cell growth, and are important determinants of fetal growth. The present study examined the levels of maternal and cord plasma folate, vitamin B, homocysteine, and their association with birth outcome in women with preeclampsia (PE). This study includes 450 normotensive control (NC) and 350 women with PE. PE women were further classified into women delivering at term (n = 224) and preterm (n = 126). Maternal and cord blood was collected at delivery. The levels of maternal vitamin B (p < 0.05), folate (p < 0.01), and homocysteine (p < 0.01) were higher in the PE group as compared to the NC group. Maternal folate levels were higher in both term and preterm groups, while vitamin B levels were higher only in the preterm group as compared to NC group. In contrast, homocysteine was higher only in the term PE group. Similar changes were also observed in the cord plasma. There was a positive association of maternal plasma homocysteine with systolic (r = 0.151, p = 0.000, n = 578) and diastolic blood pressure (r = 0.213, p = 0.000, n = 578) in the whole cohort. A negative association of maternal folate with systolic blood pressure (r = -0.105, p = 0.048, n = 352) while a positive association with baby weight in the NC group (r = 0.116, p = 0.029, n = 352). The present study suggests that maternal and cord micronutrient levels are altered in women with PE.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41371-019-0164-4DOI Listing

Publication Analysis

Top Keywords

plasma folate
8
folate vitamin
8
vitamin homocysteine
8
women preeclampsia
8
levels maternal
8
maternal cord
8
women
5
higher maternal
4
maternal plasma
4
vitamin
4

Similar Publications

Chemical polymerization/oligomerization opens numerous opportunities, from fundamental materials research to practical applications in catalysis, energy, sensing, and medicine. The electrochemical detection of vitamins B (folic acid) and C (ascorbic acid) requires new approaches because of low selectivity, electrode fouling, and interference from other chemicals. As an excellent material for long-term vitamin detection, oligo 3,5-diamino-1,2,4-triazole (oligo DAT) enhances the sensitivity, selectivity, and stability of sensors by creating a stable, conductive layer that facilitates electron transfer and reduces interference from common substances like glucose or uric acid.

View Article and Find Full Text PDF

Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.

Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.

View Article and Find Full Text PDF

Background: One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid.

View Article and Find Full Text PDF

Background/objectives: The gene variant results in a thermolabile MTHFR enzyme associated with elevated plasma homocysteine in TT individuals. Health risks associated with the TT genotype may be modified by dietary and supplemental folate intake. Supplementation with methyltetrahydrofolate (methylTHF) may be preferable to folic acid because it is the MTHFR product, and does not require reduction by DHFR to enter one-carbon folate metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!