Neurons in primary visual cortex are strongly modulated both by stimulus contrast and by fluctuations of internal inputs. An important question is whether the population code is preserved under these conditions. Changes in stimulus contrast are thought to leave the population code invariant, whereas the effect of internal gain modulations remains unknown. To address these questions we studied how the direction-of-motion of oriented gratings is encoded in layer 2/3 primary visual cortex of mouse (with C57BL/6 background, of either sex). We found that, because contrast gain responses across cells are heterogeneous, a change in contrast alters the information distribution profile across cells leading to a violation of contrast invariance. Remarkably, internal input fluctuations that cause commensurate firing rate modulations at the single-cell level result in more homogeneous gain responses, respecting population code invariance. These observations argue that the brain strives to maintain the stability of the neural code in the face of fluctuating internal inputs. Neuronal responses are modulated both by stimulus contrast and by the spontaneous fluctuation of internal inputs. It is not well understood how these different types of input impact the population code. Specifically, it is important to understand whether the neural code stays invariant in the face of significant internal input modulations. Here, we show that changes in stimulus contrast lead to different optimal population codes, whereas spontaneous internal input fluctuations leave the population code invariant. This is because spontaneous internal input fluctuations modulate the gain of neuronal responses more homogeneously across cells compared to changes in stimulus contrast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391566 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2012-18.2019 | DOI Listing |
Behav Sci (Basel)
January 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan.
This study investigated the two distinct perceptions (pleasantness and softness) of deformable stimuli with different degrees of compliance under conditions with and without a contextual task. Three tactile strategies-grasping, pinching, and pressing-were used to perceive the stimuli. In Experiment 1 (without a contextual task), participants estimated the perceived intensity of softness or pleasantness for each stimulus.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect to exert a therapeutic effect.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
Will our brains get to know a new face better if we look at its external features first? Here we offer neurophysiological evidence of the relevance of external versus internal facial features for constructing new face representations, by contrasting successful face processing with a prototypical case of face agnosia. A woman with acquired prosopagnosia (E.C.
View Article and Find Full Text PDFJ Neurosci
January 2025
Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA
In everyday hearing, listeners face the challenge of understanding behaviorally relevant foreground stimuli (speech, vocalizations) in complex backgrounds (environmental, mechanical noise). Prior studies have shown that high-order areas of human auditory cortex (AC) pre-attentively form an enhanced representation of foreground stimuli in the presence of background noise. This enhancement requires identifying and grouping the features that comprise the background so they can be removed from the foreground representation.
View Article and Find Full Text PDFAm J Speech Lang Pathol
January 2025
The University of Sydney, New South Wales, Australia.
Purpose: Management of discourse is acknowledged as a critical component of speech-language pathology practice with cognitive communication after traumatic brain injury (TBI). This scoping review aimed to collate the visual materials that are being used in empirical research for spoken narrative elicitation post-TBI, in both assessment and treatment contexts. We aimed to examine the format, structure, and sources for visuals used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!