Mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are essential components of the mitochondrial translation machinery. The correlation of mitochondrial disorders with mutations in these enzymes has raised the interest of the scientific community over the past several years. Most surprising has been the wide-ranging presentation of clinical manifestations in patients with mt-aaRS mutations, despite the enzymes' common biochemical role. Even among cases where a common physiological system is affected, phenotypes, severity, and age of onset varies depending on which mt-aaRS is mutated. Here, we review work done thus far and propose a categorization of diseases based on tissue specificity that highlights emerging patterns. We further discuss multiple and efforts to characterize the behavior of WT and mutant mt-aaRSs that have shaped hypotheses about the molecular causes of these pathologies. Much remains to do in order to complete our understanding of these proteins. We expect that futher work is likely to result in the discovery of new roles for the mt-aaRSs in addition to their fundamental function in mitochondrial translation, informing the development of treatment strategies and diagnoses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462531 | PMC |
http://dx.doi.org/10.1074/jbc.REV118.002953 | DOI Listing |
Am J Physiol Lung Cell Mol Physiol
January 2025
Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.
Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Biology, Colorado State University, Fort Collins, CO 80523.
Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.
Photorespiration is a complex metabolic process linked to primary plant metabolism and influenced by environmental factors, yet its regulation remains poorly understood. In this study, we identified the asprs3-1 mutant, which displays a photorespiratory phenotype with leaf chlorosis, stunted growth, and diminished photosynthesis under ambient CO, but normal growth under elevated CO conditions. Map-based cloning and genetic complementation identified AspRS3 as the mutant gene, encoding an aspartyl-tRNA synthetase.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA. Electronic address:
Human genetic disorders are often caused by mutations of compound heterozygosity, where each allele of the mutant gene harbors a different genetic lesion. However, studies of such mutations are hampered due to the lack of an appropriate model. Here we describe a kinetic model of compound heterozygous variants in an obligate enzyme dimer that contains one mutation in one monomer and the other mutation in the second monomer.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
Initiation factors play critical roles in fine-tuning translation initiation, which is the first and the rate-limiting step in protein synthesis. In bacteria, initiation factors, IF1, IF2 and IF3 work in concert to accurately position the initiator tRNA (i-tRNA) in its formyl-aminoacyl form, and the mRNA start codon at the ribosomal P-site, setting the stage for accommodation of the aminoacyl-tRNA in response to the second codon, and formation of the first peptide bond. Among these, IF3 is particularly crucial in ensuring the fidelity of translation initiation as it is involved in the accuracy of the selection of i-tRNA and the start codon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!