Importance: Although studies have described differences in hospital outcomes by patient race and socioeconomic status, it is not clear whether such disparities are driven by hospitals themselves or by broader systemic effects.

Objective: To determine patterns of racial and socioeconomic disparities in outcomes within and between hospitals for patients with acute myocardial infarction, heart failure, and pneumonia.

Design, Setting, And Participants: Retrospective cohort study initiated before February 2013, with additional analyses conducted during the peer-review process. Hospitals in the United States treating at least 25 Medicare fee-for-service beneficiaries aged 65 years or older in each race (ie, black and white) and neighborhood income level (ie, higher income and lower income) for acute myocardial infarction, heart failure, and pneumonia between 2009 and 2011 were included.

Main Outcomes And Measures: For within-hospital analyses, risk-standardized mortality rates and risk-standardized readmission rates for race and neighborhood income subgroups were calculated at each hospital. The corresponding ratios using intraclass correlation coefficients were then compared. For between-hospital analyses, risk-standardized rates were assessed according to hospitals' proportion of patients in each subgroup. These analyses were performed for each of the 12 analysis cohorts reflecting the unique combinations of outcomes (mortality and readmission), demographics (race and neighborhood income), and conditions (acute myocardial infarction, heart failure, and pneumonia).

Results: Between 74% (3545 of 4810) and 91% (4136 of 4554) of US hospitals lacked sufficient racial and socioeconomic diversity to be included in this analysis, with the number of hospitals eligible for analysis varying among cohorts. The 12 analysis cohorts ranged in size from 418 to 1265 hospitals and from 144 417 to 703 324 patients. Within included hospitals, risk-standardized mortality rates tended to be lower among black patients (mean [SD] difference between risk-standardized mortality rates in black patients compared with white patients for acute myocardial infarction, -0.57 [1.1] [P = .47]; for heart failure, -4.7 [1.3] [P < .001]; and for pneumonia, -1.0 [2.0] [P = .05]). However, risk-standardized readmission rates among black patients were higher (mean [SD] difference between risk-standardized readmission rates in black patients compared with white patients for acute myocardial infarction, 4.3 [1.4] [P < .001]; for heart failure, 2.8 [1.8] [P < .001], and for pneumonia, 3.7 [1.3] [P < .001]). Intraclass correlation coefficients ranged from 0.68 to 0.79, indicating that hospitals generally delivered consistent quality to patients of differing races. While the coefficients in the neighborhood income analysis were slightly lower (0.46-0.60), indicating some heterogeneity in within-hospital performance, differences in mortality rates and readmission rates between the 2 neighborhood income groups were small. There were no strong, consistent associations between risk-standardized outcomes for white or higher-income neighborhood patients and hospitals' proportion of black or lower-income neighborhood patients.

Conclusions And Relevance: Hospital performance according to race and socioeconomic status was generally consistent within and between hospitals, even as there were overall differences in outcomes by race and neighborhood income. This finding indicates that disparities are likely to be systemic, rather than localized to particular hospitals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324513PMC
http://dx.doi.org/10.1001/jamanetworkopen.2018.2044DOI Listing

Publication Analysis

Top Keywords

acute myocardial
20
myocardial infarction
20
heart failure
20
infarction heart
16
racial socioeconomic
12
neighborhood income
12
risk-standardized mortality
12
mortality rates
12
socioeconomic disparities
8
disparities outcomes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!