Aims: Canine demodicosis is a parasitic condition affecting the skin of dogs. The present study was designed to characterize chitin synthase gene of Demodex canis. The molecular technique was used for better understanding of this gene.

Methods: A total of 75 dogs which are reared as pets with or without showing any skin lesions were examined during the study period. Skin scrapings were examined by indirect method using 10% potassium hydroxide solution under 10 × microscope. DNA samples were extracted from positive skin samples and were subjected to PCR for molecular identification.

Results: A total of 25 dogs irrespective of age, sex, breed or coat showed positive result for D. canis. The PCR revealed a single amplified product of 339 bp length which exactly matched with D. canis. The chitin synthase gene was amplified by PCR, subsequently cloned, sequenced, and compared with available data in GenBank for the particular gene of D. canis. Only one single nucleotide polymorphism (SNP) was noticed at 231 position of the chitin synthase gene sequence when compared to other isolates.

Conclusion: The molecular technique confirms with the morphological identity of D. canis. This report signifies the value of peculiar tool to identify 'follicular mite' even from apparently healthy skin.

Download full-text PDF

Source
http://dx.doi.org/10.2478/s11686-018-00008-6DOI Listing

Publication Analysis

Top Keywords

chitin synthase
16
synthase gene
16
gene demodex
8
demodex canis
8
molecular technique
8
total dogs
8
canis
6
gene
5
skin
5
molecular
4

Similar Publications

Etoxazole, a widely used mite growth inhibitor, contains a chiral center in its chemical structure, resulting in two mirror-image enantiomers. These enantiomers of etoxazole display significant differences in biological activity and environmental behavior. In bioassays conducted against , it was observed that S-etoxazole demonstrated approximately 279.

View Article and Find Full Text PDF

Protoplasts are essential tools for genetic manipulation and functional genomics research in fungi. This study systematically optimized protoplast preparation conditions and examined transcriptional changes throughout the preparation and regeneration processes to elucidate the molecular mechanisms underlying the formation and regeneration of protoplasts in . The results indicated an optimal protoplast yield of 5.

View Article and Find Full Text PDF

miR-9a and miR-10482-5p regulate the expression of chitin synthase and chitinase genes, enhancing lufenuron tolerance in Spodoptera frugiperda.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:

Spodoptera frugiperda is a significant agricultural pest, severely impacting the yield and quality of grain. Chitin is the momentous component of exoskeletons, which has a significant impact on the growth and development of insects. Our previous study found that exposure to lufenuron can reduce the expression of chitinase gene (SfCHT5) and increase the expression of chitin synthase gene (SfCHSB), two key genes for chitin synthesis in S.

View Article and Find Full Text PDF

Discovery and Characterization of Chitin Synthase Inhibitors with Novel Mechanism for Control of .

J Agric Food Chem

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

, a highly destructive global pest, infests a wide range of plant species, including crucial food crops and ornamental plants. Effective control methods for this pest remain limited. Chitin synthase (CHS) is a key enzyme in the biosynthesis of chitin, which is essential for the growth and development of arthropods.

View Article and Find Full Text PDF

Sdd3 regulates the biofilm formation of via the Rho1-PKC-MAPK pathway.

mBio

December 2024

A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

, the most frequently isolated fungal pathogen in humans, forms biofilms that enhance resistance to antifungal drugs and host immunity, leading to frequent treatment failure. Understanding the molecular mechanisms governing biofilm formation is crucial for developing anti-biofilm therapies. In this study, we conducted a genetic screen to identify novel genes that regulate biofilm formation in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!