In this paper, an optimal mode set is proposed to maximize the receiving power for free space transmission under atmosphere turbulence with transmitter/receiver aperture size constraint. The optimal beam profiles are evaluated through eigenmode analysis of the Fredholm integral equation, which is mathematically equivalent to the eigen vector analysis of an infinitely large matrix. The matrix is formed by orthonormal basis expansion, and its element is the overlap integral of the orthonormal basis functions and the Fredholm kernel. If circular aperture is implemented, then it is rigorously proven in this work that the eigenmodes possess certain topological charges (i.e., they are the OAM modes). These OAM modes have specific radial beam profiles, which have been optimized to minimize the power loss and the inter-mode crosstalk. While the traditional OAM beams, such as the Laguerre-Gauss (LG) beams, suffer significant energy loss and inter-radial-mode crosstalk, the optimized beam profiles will remarkably reduce the penalties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.033333 | DOI Listing |
NPJ Precis Oncol
January 2025
Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Pancreatic ductal adenocarcinoma (PDAC) is notably resistant to conventional chemotherapy and radiation treatment. However, clinical trials indicate that carbon ion radiotherapy (CIRT) with concurrent gemcitabine is effective for unresectable locally advanced PDAC. This study aimed to identify patient characteristics predictive of CIRT response.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
Recent investigations into radiation-induced side effects have focused on understanding the physiopathological consequences of irradiation on late-responding tissues like the spinal cord, which can lead to chronic progressive myelopathy. Proton therapy, an advanced radiation treatment, aims to minimize damage to healthy tissues through precise dose deposition. However, challenges remain, particularly regarding the variation in dose distribution, characterized by maximum deposition at the end of the proton range, known as the distal fall-off of a spread-out Bragg peak.
View Article and Find Full Text PDFWhen observing chip-to-free-space light beams from silicon photonics (SiPh) to free space, manual adjustment of camera lens is often required to obtain a focused image of the light beams. In this Letter, we demonstrated an auto-focusing system based on the you-only-look-once (YOLO) model. The trained YOLO model exhibits high classification accuracy of 99.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiation Oncology, Stanford University, Palo Alto, California, USA.
Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw 01-142, Poland.
Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!