Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A 10.8 µm wide ridge waveguide was fabricated by diamond-blade dicing in an ion-exchanged periodically poled Rb-doped KTiOPO sample. The waveguide was used to generate blue second harmonic light at 468.8 nm in the TM mode through first order Type I quasi-phase matching, exploiting the large d coefficient of the crystal. It was evaluated using a cw Ti:Sapphire laser, and 6.7 µW of blue light was generated with 5.8 mW of fundamental radiation at 933.8 nm coupled through the waveguide. The results presented here pave the way for efficient nonlinear processes in a waveguide format.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.033142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!