We demonstrate the feasibility of bidirectional image transmission through a physically thick scattering medium within its memory effect range by digital optical phase conjugation. We show the bidirectional transmission is not simply the consequence of optical reciprocity. We observe that when the spatial light modulator (the device performing the digital optical phase conjugation) is relayed to the middle plane of the medium, the memory effect will be fully exploited and thus the transmitted images will have maximum field of view (FOV). Furthermore, we show that the FOV can be expanded n times by performing n times wavefront measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.033066DOI Listing

Publication Analysis

Top Keywords

digital optical
12
optical phase
12
phase conjugation
12
bidirectional image
8
image transmission
8
transmission physically
8
physically thick
8
thick scattering
8
medium memory
8
scattering media
4

Similar Publications

Accuracy of digital and conventional implant impressions in edentulous jaws: a clinical comparative study.

J Dent

January 2025

Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Objectives: This clinical study aimed to evaluate the accuracy of digital and conventional implant impressions in a fully edentulous maxilla and mandible.

Methods: A 53-year-old edentulous patient with four maxillary and two mandibular implants was selected. Ten intraoral scans (IOS) and a conventional impression per jaw were taken.

View Article and Find Full Text PDF

HRP-integrated CRISPR-Cas12a biosensor for rapid point-of-care detection of Langya henipavirus.

iScience

December 2024

Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, 1 Xueyuan Road, Chongqing 400016, China.

Global pandemic has emphasized the needs for advanced pathogen diagnosis in dealing with newly emerged infectious threats, including the Langya henipavirus (LayV). LayV, as an emerging zoonotic pathogen, has potential to cause pandemic, but lacks of rapid diagnostic tools, particularly at point-of-care level. Here, we leveraged the merits of CRISPR-Cas12a biosensing and established a highly sensitive LayV detection method.

View Article and Find Full Text PDF

Objective: Due to their consistent and individualistic patterns, palatal rugae (PR) are used in forensic dentistry as an ancillary method for personal identification. This study aimed to compare the impression of the PR obtained with the classic alginate impression and casting of the plaster model with the impression of the palate made with an intraoral scanner. Both impressions were compared with each other and with the photograph of the palatal rugae.

View Article and Find Full Text PDF

The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.

View Article and Find Full Text PDF

Purpose: Our study presents a virtual reality-based tangent screen test (VTS) to measure subjective ocular deviations including torsion in nine directions of gaze. The test was compared to the analogous Harms tangent screen test (HTS).

Methods: We used an Oculus Go controller and head-mounted-display with rotation sensors to measure patient's head orientation for the VTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!