To measure the 3D microdisplacement of a self-oscillating polymer gel driven by the Belousov-Zhabotinsky reaction, we propose, to the best of our knowledge, a new particle detection and tracking method based on a phase image/volume template matching using digital holographic microscopy. We demonstrate the precision of the proposed method and compare it with conventional approaches. The method is applied to 3D measurement of the motions of particles attached to the surface of an oscillating gel. Measurement results show that the local area of the gel oscillates periodically, and the motion propagates throughout the gel. Our method can measure rapid and complex 3D microdisplacement change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.010541 | DOI Listing |
Biomed Opt Express
January 2025
Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.
Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland.
A fair comparison of multiple live cell cultures requires examining them under identical environmental conditions, which can only be done accurately if all cells are prepared simultaneously and studied at the same time and place. This contribution introduces a multiplexed lensless digital holographic microscopy system (MLS), enabling synchronous, label-free, quantitative observation of multiple live cell cultures with single-cell precision. The innovation of this setup lies in its ability to robustly compare the behaviour, i.
View Article and Find Full Text PDFWe present the first, to our knowledge, metasurface holographic display method with exceptional fidelity and minimal edge noise, based on highly uniform flat-top light generated by a digital micromirror device (DMD). Based on the error-diffusion algorithm and iterative refinement process, the amplitude distribution of the initial Gaussian light was dynamically closed-loop modulated, and the standard difference of the intensity of the 3 mm diameter center flat-top beam was reduced to less than 3.4%.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia, 634050.
Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!