Detecting light is fundamental to all optical experiments and applications. At the single photon level, the quantized nature of light requires specialised detectors, which typically saturate when more than one photon is incident. Here, we report on a massively-multiplexed single-photon detector, which exploits the saturation regime of a single click detector to exhibit a dynamic range of 123 dB, enabling measurement from optical energies as low as 10 photons per pulse to ∼ 2.5 × 10photons per pulse. This allows us to calibrate a single photon detector directly to a power meter, as well as characterize the nonclassical features of a variety of quantum states.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.000001DOI Listing

Publication Analysis

Top Keywords

dynamic range
8
single photon
8
high dynamic
4
range optical
4
detector
4
optical detector
4
detector measuring
4
single
4
measuring single
4
single photons
4

Similar Publications

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Background: Drafting for drag reduction is a tactic commonly employed by elite athletes of various sports. The strategy has been adopted by Kenyan runner Eliud Kipchoge on numerous marathon events in the past, including the 2018 and 2022 editions of the Berlin marathon (where Kipchoge set two official world records), as well as in two special attempts to break the 2 h mark for the distance, the Nike Breaking2 (2017) and the INEOS 1:59 Challenge (2019), where Kipchoge used an improved drafting formation to finish in 1:59:40, although that is not recognized as an official record.

Results: In this study, the drag of a realistic model of a male runner is calculated by computational fluid dynamics for a range of velocities.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive volumes of high-dimensional data, presenting significant data and privacy security challenges. As IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority is vital. In the period of big data, statistical learning has seen fast progressions in methodological practical and innovation applications.

View Article and Find Full Text PDF

Reliable prediction of photovoltaic power generation is key to the efficient management of energy systems in response to the inherent uncertainty of renewable energy sources. Despite advances in weather forecasting, photovoltaic power prediction accuracy remains a challenge. This study presents a novel approach that combines genetic algorithms and dynamic neural network structure refinement to optimize photovoltaic prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!