A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Key Value of RNA Analysis of MYBPC3 Splice-Site Variants in Hypertrophic Cardiomyopathy. | LitMetric

Key Value of RNA Analysis of MYBPC3 Splice-Site Variants in Hypertrophic Cardiomyopathy.

Circ Genom Precis Med

Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Australia (E.S.S., J.I., C.S., R.D.B.).

Published: January 2019

Background: MYBPC3 splicing errors are a common cause of hypertrophic cardiomyopathy (HCM). Variants affecting essential splice-site dinucleotides inhibit splicing, whereas the impact of variants at conserved flanking nucleotides is less clear. We evaluated the contribution of MYBPC3 splice-site variants in a large cohort of patients with HCM and assessed the impact on splicing with RNA analysis.

Methods: Patients attending a specialized multidisciplinary clinic, with a clinical diagnosis of HCM and genetic testing of at least 46 cardiomyopathy-associated genes, were included. Patients with variants in MYBPC3 splice sites with in silico-predicted effects on splicing were selected. RNA was extracted from fresh venous blood or paraffin-embedded myocardial tissue of the patients, amplified, and sequenced. Variants were classified for pathogenicity using the American College of Medical Genetics and Genomics guidelines.

Results: We found 29 rare MYBPC3 splice-site variants in 56 of 557 (10%) unrelated HCM probands. Three variants were not predicted to alter RNA splicing, and 13 essential splice dinucleotide, nonsense, and short insertion or deletion variants were not further assessed. RNA analysis was performed on 9 variants (c.654+5G>C, c.772G>A, c.821+3G>T, c.927-9G>A, c.1090G>A, c.1624G>A, c.1624+4A>T, c.3190+5G>A, and c.3491-3C>G), and RNA splicing errors were confirmed for 7. Four variants in 4 families resulted in clinically meaningful reclassifications.

Conclusions: After RNA analysis, 4 of 56 (7%) families with MYBPC3 splice-site variants were reclassified from uncertain clinical significance to likely pathogenic. RNA analysis of splice-site variants can assist in understanding pathogenicity and increase the diagnostic yield of genetic testing in HCM.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.118.002368DOI Listing

Publication Analysis

Top Keywords

splice-site variants
20
rna analysis
16
mybpc3 splice-site
16
variants
13
hypertrophic cardiomyopathy
8
splicing errors
8
genetic testing
8
rna splicing
8
rna
7
mybpc3
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!